Answer:
The dimension that minimizes the container is width = 1; base = 2 and height = 5
The minimum cost is $36
Step-by-step explanation:
Let the width be x
So:
![Width = x](https://img.qammunity.org/2021/formulas/mathematics/college/gn4un3cchgxa1av7ypvxb8zgzhoqsg2mu5.png)
![Base = 2 * Width](https://img.qammunity.org/2021/formulas/business/college/oyzlxoa6o4edbktlovkgcx7qrdw8y8hlyq.png)
![Base = 2 * x](https://img.qammunity.org/2021/formulas/business/college/9gqmmyrihin5lnnzcaoqcieomdbmro5qob.png)
![Base = 2x](https://img.qammunity.org/2021/formulas/business/college/pf0pan7qxk0zcrawmrewaw3tuapjzd5xjr.png)
![Height = h](https://img.qammunity.org/2021/formulas/business/college/duefwgujqjkfp68ebaanqpccqts0to3cb0.png)
Volume of the box is:
---- Given
Volume is calculated as:
![Volume = Base * Width * Height](https://img.qammunity.org/2021/formulas/business/college/zdl1mtx1qz9d9poja8potwixcgo133izd1.png)
![Volume = 2x * x * h](https://img.qammunity.org/2021/formulas/business/college/8arwwtkgrmmgimdvkqoi8d9ghjw41lly5p.png)
![Volume = 2x^2h](https://img.qammunity.org/2021/formulas/business/college/742bbaydpobz04fs07gegmh6gmwt98eeps.png)
Substitute 10 for Volume
![10 = 2x^2h](https://img.qammunity.org/2021/formulas/business/college/d6wgv5uqo1nqhkx1p1vijogg27m1x4ocf7.png)
Make h the subject
![h = (10)/(2x^2)](https://img.qammunity.org/2021/formulas/business/college/jnqdjd6s1ts0m4yimequmq6xzpaz4x7jx9.png)
![h = (5)/(x^2)](https://img.qammunity.org/2021/formulas/business/college/yobp0arjxls0od96cgt2z4bsqtgoznv49l.png)
Next, we calculate area of the sides.
![Area = Base + Sides](https://img.qammunity.org/2021/formulas/business/college/saf535cskdpfiaucyc0hht0vylq7ouboqy.png)
Because it has an open top, the area is:
![Base\ Area = Base * Width](https://img.qammunity.org/2021/formulas/business/college/3px33nl3epmzya21kn7lkv0jp4wpbhw3la.png)
![Sides\ Area = 2[(Width * Height) + (Base * Height)]](https://img.qammunity.org/2021/formulas/business/college/7ywe6zjk33j76riwu1z5nbpjflfo500sjg.png)
![Base\ Area = 2x * x](https://img.qammunity.org/2021/formulas/business/college/cu1kdjnxpteqmcw5lezky2hz6sdodxghjb.png)
![Base\ Area = 2x^2](https://img.qammunity.org/2021/formulas/business/college/k8kiios52gftf502pw4bo34inq6802emu5.png)
![Sides\ Area = 2[(Width * Height) + (Base * Height)]](https://img.qammunity.org/2021/formulas/business/college/7ywe6zjk33j76riwu1z5nbpjflfo500sjg.png)
![Side\ Area = 2[(x * h) + (2x * h)]](https://img.qammunity.org/2021/formulas/business/college/adr8t8u8t487xd2g71absnby2d7ja0by5p.png)
![Side\ Area = 2[(xh) + (2xh)]](https://img.qammunity.org/2021/formulas/business/college/aus97n57mw85h50fvq3ex0sved0h4r3nxr.png)
![Side\ Area = 2[3xh]](https://img.qammunity.org/2021/formulas/business/college/v1q8v09de216yjbe0mma1avinxjtyj1wo1.png)
![Side\ Area = 6xh](https://img.qammunity.org/2021/formulas/business/college/qlc0bit7mmfpb2qoef7cz0003ku029v5f0.png)
The base area costs $6 per m²
So, the cost of 2x² would be:
![Cost = 6 * 2x^2](https://img.qammunity.org/2021/formulas/business/college/o6woefpv0xpd1f8plwvmk6jq8fpr0lxev5.png)
![Cost = 12x^2](https://img.qammunity.org/2021/formulas/business/college/ouml3g9uk5n3vzdxbzl2aas7zhp3f1nh4e.png)
The side cost area costs $0.8 per m²
So, 6xh would cost
![Cost = 0.8 * 6xh](https://img.qammunity.org/2021/formulas/business/college/ib1alq73a6cwhjvaxa3gogyd5lyunp9cq9.png)
![Cost = 4.8xh](https://img.qammunity.org/2021/formulas/business/college/bhti1ymqcto1pzr94sco1hjkjecbx5ir7e.png)
Total Cost (C) is:
![C = 12x^2 + 4.8xh](https://img.qammunity.org/2021/formulas/business/college/qqsli6ovkrs4uz41h1mu1v7zy5ppna9qjn.png)
Recall that
![h = (5)/(x^2)](https://img.qammunity.org/2021/formulas/business/college/yobp0arjxls0od96cgt2z4bsqtgoznv49l.png)
So:
![C = 12x^2 + 4.8x *(5)/(x^2)](https://img.qammunity.org/2021/formulas/business/college/fx1u1ftyo3wnxpqmyl049s3u17vk3eeyg1.png)
![C = 12x^2 + 4.8 *(5)/(x)](https://img.qammunity.org/2021/formulas/business/college/cwxv59u7bxcib7zmg1lu8yqp1prwpozcic.png)
![C = 12x^2 + (4.8 *5)/(x)](https://img.qammunity.org/2021/formulas/business/college/9mcy3nywkenb956q9cjzrjjj00db9035qt.png)
![C = 12x^2 + (24)/(x)](https://img.qammunity.org/2021/formulas/business/college/yoz4qmyma76w4cls5hsic2dwbpfgg2yo4h.png)
Take derivative of C
![C^(-1) = 24x - (24)/(x^2)](https://img.qammunity.org/2021/formulas/business/college/u23h08zvc4zpxpni4bsh9umsx36kbmkygv.png)
Take LCM
![C^(-1) = (24x^3 - 24)/(x^2)](https://img.qammunity.org/2021/formulas/business/college/r6hqnkfagh0umpijqcctmf7lhy16y77v7h.png)
Equate
to 0
![0 = (24x^3 - 24)/(x^2)](https://img.qammunity.org/2021/formulas/business/college/un8sllf93iw2pvnqw7ybfbmx4xezl50wbe.png)
Cross multiply
![24x^3 - 24 = 0 * x^2](https://img.qammunity.org/2021/formulas/business/college/j6b3jnyuhymug0t7rhkn5wh8k6gkb0mx5n.png)
![24x^3 - 24 = 0](https://img.qammunity.org/2021/formulas/business/college/s58i3vbkvzlyojrgdl83zs6isxharfxrf0.png)
Add 24 to both sides
![24x^3 = 24](https://img.qammunity.org/2021/formulas/business/college/o0dr5wk77osasp3a8lmegu5grew74dlqyg.png)
Divide through by 24
![x^3 = 1](https://img.qammunity.org/2021/formulas/business/college/h70w9gn1pdr3pkdv98briniqffrtmixsub.png)
Take cube roots of both sides
![x = 1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9h91c1kjchcke1mwwyxiajkyxryboly84u.png)
Recall that
![Width = x](https://img.qammunity.org/2021/formulas/mathematics/college/gn4un3cchgxa1av7ypvxb8zgzhoqsg2mu5.png)
![Base = 2x](https://img.qammunity.org/2021/formulas/business/college/pf0pan7qxk0zcrawmrewaw3tuapjzd5xjr.png)
and
![h = (5)/(x^2)](https://img.qammunity.org/2021/formulas/business/college/yobp0arjxls0od96cgt2z4bsqtgoznv49l.png)
Solve for these dimensions:
![Width = 1](https://img.qammunity.org/2021/formulas/business/college/1g4nx4k78slj7z4xzyvbc4e4bbrjzz2u4e.png)
![Base = 2 * 1](https://img.qammunity.org/2021/formulas/business/college/hpj3oonruyzd6y65exfflyvj7hi1zf9egl.png)
![Base = 2](https://img.qammunity.org/2021/formulas/business/college/iczwmv6hhw2837dbzoxypt4lp7fb49m1ys.png)
![h = (5)/(1^2)](https://img.qammunity.org/2021/formulas/business/college/if03tyw1mfoy2gnohxxzat4l29aeiomrwu.png)
![h = (5)/(1)](https://img.qammunity.org/2021/formulas/business/college/3gfvn3uus5lfvuxn21qqhgkbg8ek34dj6h.png)
![h = 5](https://img.qammunity.org/2021/formulas/physics/college/opws05v45k4iwtuf73xhwqr1sobm0cguwb.png)
i.e.
![Height = 5](https://img.qammunity.org/2021/formulas/business/college/qvj1s5441j3nd7a600smmqldox927e0zyj.png)
Hence, the dimension that minimizes the container is width = 1; base = 2 and height = 5
Recall that
![C = 12x^2 + (24)/(x)](https://img.qammunity.org/2021/formulas/business/college/yoz4qmyma76w4cls5hsic2dwbpfgg2yo4h.png)
Substitute 1 for x
![C = 12(1^2) + (24)/(1)](https://img.qammunity.org/2021/formulas/business/college/ypjwnxak1xna6bn6cd0kuld4hfxrqq43xh.png)
![C = 12 + 24](https://img.qammunity.org/2021/formulas/business/college/nm57h3h6krxksz0hu04ukvk5vvdavnjnxr.png)
![C = 36](https://img.qammunity.org/2021/formulas/business/college/9irdj3xujm23m1oovj09ghdyw80qc9afex.png)
The minimum cost is $36