Answer:
Let's check the congruency
<J~<N
<K~<P
<L~<M
Now apply Thales theorem for finding proportion
.
\begin{gathered}\\ \tt\bull\rightarrowtail \dfrac{JK}{PN}=\dfrac{KL}{PM}=\dfrac{JL}{NM}\end{gathered}
∙↣
PN
JK
=
PM
KL
=
NM
JL
And
\begin{gathered}\\ \tt\bull\rightarrowtail \dfrac{JK}{JL}=\dfrac{PN}{NM}\end{gathered}
∙↣
JL
JK
=
NM
PN
\begin{gathered}\\ \tt\bull\rightarrowtail \dfrac{KL}{JL}=\dfrac{PM}{MN}\end{gathered}
∙↣
JL
KL
=
MN
PM