499,023 views
41 votes
41 votes
The area of a circle, in terms of π, is 80π m2. Find the value of the radius. Give your answer as a simplified surd.

please helppp ​

User Redeye
by
3.1k points

2 Answers

23 votes
23 votes


\large❏ \: \Large\begin{gathered} {\underline{\boxed{ \sf {\red{Area \: of \: circle \: = \: πr²}}}}}\end{gathered}

  • Where , r denotes radius of circle.

Substituting , the given values into the formula and solving for r.


\large\purple\implies \rm \large \:Area \: of \: circle \: = \: πr²


\large\purple\implies \rm \large \:80\pi \: = \: \pi {r}^(2)


\large\purple\implies \rm \large \:80 \cancel\pi \: = \: \cancel\pi {r}^(2)


\large\purple\implies \rm \large \:80 \: = \: {r}^(2)


\large\purple\implies \rm \large \: √(80) \: = \: r


\large\purple\implies \rm \large \:4 √(5) \: = \: r

Hence , the radius of circle is 45.

User Faruz
by
3.2k points
16 votes
16 votes

Answer:


r=4√(5)\:\: \sf m

Explanation:


\textsf{Area of a circle}=\pi r^2 \quad \textsf{(where r is the radius)}

Given:

  • Area = 80π m²

Substitute the given value into the formula and solve for r:


\implies 80 \pi = \pi r^2


\implies (80 \pi)/(\pi) = (\pi r^2)/(\pi)


\implies 80=r^2


\implies √(r^2)=√(80)


\implies r=√(80)


\implies r=√(16 \cdot 5)


\implies r=√(16)√(5)


\implies r=√(4^2)√(5)


\implies r=4√(5)

User Biggie Mac
by
2.9k points