Answer:
![((x^(-6))/(x^2))^3 = (1)/(x^(24))](https://img.qammunity.org/2021/formulas/mathematics/high-school/9nxvakrxtmgcsflfffb888jw84jqoo7rm9.png)
Explanation:
Given
![((x^(-6))/(x^2))^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/h0ko647k9mvszezh4k051u3mog99s5eh5m.png)
Required
Determine the equivalent expression
![((x^(-6))/(x^2))^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/h0ko647k9mvszezh4k051u3mog99s5eh5m.png)
First, we need to evaluate the expression in the bracket:
Apply the following law of indices:
![(x^a)/(x^b) = x^(a-b)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sf7ci5w6fs9v1f5gtunys0l63gs0ia8awn.png)
So:
becomes
=
![(x^(-6-2))^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/rcdsesb0g3mre4629amduykqothp1s7rfl.png)
=
![(x^(-8))^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/mpfnwtx5488nixplp3ky56uh7auk8lwnzg.png)
Open the bracket
=
![x^(-8*3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/piriy5zsqh2c7fuq9a6vhfh9gnnfpm1e1q.png)
=
![x^(-24)](https://img.qammunity.org/2021/formulas/mathematics/high-school/m8xcovt6wl05om4frjtvkjtat31lr7gcgt.png)
Convert the above expression to fraction
=
![(1)/(x^(24))](https://img.qammunity.org/2021/formulas/mathematics/high-school/bhjl471j5v6anf7u2ihzqypxhgrpiy0amm.png)
Hence:
![((x^(-6))/(x^2))^3 = (1)/(x^(24))](https://img.qammunity.org/2021/formulas/mathematics/high-school/9nxvakrxtmgcsflfffb888jw84jqoo7rm9.png)