171k views
7 votes
Help needed :


\quad \sf \: {x}^(2) = 1 - 37

solve for x ​

User Feryt
by
4.5k points

2 Answers

6 votes

Answer:

  • x = 6i, -6i

Step-by-step explanation:


\sf x^2=1-37

Subtract 37 from 1 = -36


\boxed{\sf x^2=? :\: x=√(?),\:\:-√(?)}


\sf x=√(-36)


\sf x=-√(-36)

Apply Radical Rule:-


\boxed{ \sf √(-a)=√(-1)√(a)}


\sf √(-36)=√(-1)√(36)


\sf √(-1)√(36)


\boxed{\sf √(-1 )=i}


\sf √(36)i


\sf 6i

___________


\sf x=-√(-36)


\sf -√(-36)


\sf -6i

Therefore, x = 6i, -6i.

__________________________

User Ziewvater
by
4.8k points
6 votes

Answer:

x = 6i, -6i

Step-by-step explanation:

x² = 1 - 37 (subtract)

x² = -36 (square root both sides)

x = ±√-36 (breakdown)

x = +√-36, -√-36 (simplify)

x = 6i, -6i

User NikBond
by
3.8k points