56.9k views
3 votes
1/a-1 -1/a+1 - 2/2a+1 - 2/2a-1​

1 Answer

2 votes

Answer:

-2-
(2)/(a)

Explanation:

I broke up the fractions so that it is easier.


(1)/(a-1) -
(1)/(a+1) -
(2)/(2a+1) -
(2)/(2a-1) = (
(1)/(a) -
(1)/(1)) - (
(1)/(a) +
(1)/(1)) - (
(2)/(2a) +
(2)/(1)) - (
(2)/(2a) -
(2)/(1))

Now I remove the brackets. One plus and one minus make one minus and two minus makes one plus.

(
(1)/(a) -
(1)/(1)) - (
(1)/(a) +
(1)/(1)) - (
(2)/(2a) +
(2)/(1)) - (
(2)/(2a) -
(2)/(1)) =
(1)/(a) -
(1)/(1) -
(1)/(a) -
(1)/(1) -
(2)/(2a) -
(2)/(1) -
(2)/(2a) +
(2)/(1)

Remove redundancies. (
(1)/(a) -
(1)/(a) = 0)


(1)/(a) -
(1)/(1) -
(1)/(a) -
(1)/(1) -
(2)/(2a) -
(2)/(1) -
(2)/(2a) +
(2)/(1) = -
(2)/(1) -
(4)/(2a)

Simplify the fractions.

-
(2)/(1) -
(4)/(2a) = -2-
(2)/(a)

User Bonteq
by
5.6k points