Answer:
Alpha is 54 degrees
Explanation:
We can use the addition identities for cosine and for sine to express the given equation in terms of sine and cosine of alpha:
![cos(3\alpha)= - sin(2\alpha)\\cos(2\alpha)*cos(\alpha)-sin(2\alpha)*sin(\alpha) = - 2*sin(\alpha)*cos(\alpha)\\(cos^2(\alpha)-sin^2(\alpha))*cos(\alpha)-2*sin^2(\alpha)*cos(\alpha)+ 2*sin(\alpha)*cos(\alpha)=0\\cos^2(\alpha)-sin^2(\alpha)-2*sin^2(\alpha)+ 2*sin(\alpha)=0\\1-sin^2(\alpha)-sin^2(\alpha)-2*sin^2(\alpha)+2*sin(\alpha)=0\\-4*sin^2(\alpha)+2*sin(\alpha)+1=0](https://img.qammunity.org/2021/formulas/mathematics/college/p3ivp4c9q7d50s85i1urmd2oowu49pc4cc.png)
we can use the quadratic formula to find what sine of alpha is:
![sin(\alpha)=(-2+/-√(4-4(-4)(1)) )/(2(-4)) =(-1+/-√(5) )/(-4)](https://img.qammunity.org/2021/formulas/mathematics/college/vbjp5mpiyw9c9c1qavnye1akfw1tjahy09.png)
and for
to be positive (acute angle in the first quadrant) the answer is:
![sin(\alpha)=(1+√(5) )/(4) \\\alpha= arcsin((1+√(5) )/(4))\\\alpha= 54^o](https://img.qammunity.org/2021/formulas/mathematics/college/1v1vlmk9rr9qbybbmpozd2k1bxnmt98out.png)