Answer:
![\displaystyle 2^{(6)/(5)}=2\sqrt[5]{2}](https://img.qammunity.org/2021/formulas/mathematics/college/wqvwienxoae4e8zvtzeyly1jkes15ehv9x.png)
Explanation:
Fractional Exponents
An expression like
![\displaystyle a^{(n)/(m)}](https://img.qammunity.org/2021/formulas/mathematics/college/y69wq9yy4lfnvwgqxlzixphmrjffxse6tt.png)
can be expressed as a radical of the form:
![\sqrt[m]{a^n}](https://img.qammunity.org/2021/formulas/mathematics/college/qcfcwdwyfsbkg1epdt1eo1iaitql6owjbj.png)
We have the expression:
![\displaystyle 2^{(6)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/college/jqoilb9z5ape0ugqcuzii3bru9vr6blu5t.png)
Its equivalent radical form is:
![\displaystyle 2^{(6)/(5)}=\sqrt[5]{2^6}](https://img.qammunity.org/2021/formulas/mathematics/college/gqxoestyj9dtarc9gf9gnlt3hgwbhed5js.png)
Since the exponent is greater than the index of the radical, we can take 2 out of it by following the procedure:
![\sqrt[5]{2^6}=\sqrt[5]{2^5\cdot 2}](https://img.qammunity.org/2021/formulas/mathematics/college/jqgul11u4q82lu5g2t5u13ksy10vp59u3y.png)
Taking out
from the radical:
![\sqrt[5]{2^6}=2\sqrt[5]{2}](https://img.qammunity.org/2021/formulas/mathematics/college/qgjz35d33nqnbn77rszrou8nd0ei2prc2a.png)
Thus:
![\displaystyle 2^{(6)/(5)}=2\sqrt[5]{2}](https://img.qammunity.org/2021/formulas/mathematics/college/wqvwienxoae4e8zvtzeyly1jkes15ehv9x.png)