Answer:
solving the inequality
we get
![\mathbf{-7 < p < (33)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/college/xlu3atq30lotw5rxfe2k68djtuj8fo49hr.png)
Explanation:
We need to solve the inequality
![|-2-10p|+2<70](https://img.qammunity.org/2021/formulas/mathematics/college/uhkjx5vc3yf1ltywm1bnznto6xewi184z5.png)
Step 1: Subtract 2 from both sides
![|-2-10p|+2-2<70-2\\|-2-10p|<68](https://img.qammunity.org/2021/formulas/mathematics/college/6hpu26741g6q5xm1cp9uv2leympgmb9sk2.png)
Step 2: Using the rule |u| < a then -a < u < a
![-68<-2-10p<68](https://img.qammunity.org/2021/formulas/mathematics/college/ok27vikc29n2p5tl4h2o87wrul4uerj207.png)
Step 3: Solving:
![-2-10p >-68 \ or \ -2-10p < 68\\-10p >-68+2 \ or \ -10p < 68+2\\-10p >-66 \ or \ -10p < 70](https://img.qammunity.org/2021/formulas/mathematics/college/srqgl31qzq0xyiiqwu167e09iqrx4of8pc.png)
Step 4: Divide both sides by -10, the inequalities will be reversed
![(-10p)/(-10)<(-66)/(-10) \ or \ (-10p)/(-10)>(70)/(-10)\\p<(33)/(5) \ or \ p>-7](https://img.qammunity.org/2021/formulas/mathematics/college/ya2tu09wdc4hc3koeku906e8dqd0ak47on.png)
Step 5: Combining the terms
![-7 < p < (33)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/kaurylgwriha81ispfnyurjcrz3ic8n6jn.png)
So, solving the inequality
we get
![\mathbf{-7 < p < (33)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/college/xlu3atq30lotw5rxfe2k68djtuj8fo49hr.png)