Answer:
f(x) = x³ + 5x² - 17x - 21
General Formulas and Concepts:
Algebra I
- Standard Form: f(x) = axⁿ + bxⁿ⁻¹ + cx + d
- Roots of a Polynomial: (x + a)(x + b)(x + c)(x + ...)
- Expanding by FOIL-ing
- Combining Like Terms
Explanation:
Step 1: Define
Roots x = -7, -1, 3
Step 2: Find function
- Write binomial roots: f(x) = (x - 3)(x + 1)(x + 7)
- Expand: f(x) = (x² + x - 3x - 3)(x + 7)
- Combine like terms(x): f(x) = (x² - 2x - 3)(x + 7)
- Expand: f(x) = x³ - 2x² - 3x + 7x² - 14x - 21
- Combine like terms(x²): f(x) = x³ + 5x² - 3x - 14x - 21
- Combine like terms(x): f(x) = x³ + 5x² - 17x - 21