71.1k views
7 votes
Factor the following expression. Simplify your answer.
5t( -2t + 3)^2/3 +2( -2t + 3)^5/3

1 Answer

4 votes

Answer:


(t+6)(-2t+3)^{(2)/(3)}

Explanation:


\textsf{Given expression}:


5t(-2t+3)^{(2)/(3)}+2(-2t+3)^{(5)/(3)}


\textsf{Apply exponent rule} \quad a^(b+c)=a^b \cdot a^c:


\implies 5t(-2t+3)^{(2)/(3)}+2(-2t+3)^{(3+2)/(3)}


\implies 5t(-2t+3)^{(2)/(3)}+2(-2t+3)^{(3)/(3)}(-2t+3)^{(2)/(3)}


\implies 5t(-2t+3)^{(2)/(3)}+2(-2t+3)(-2t+3)^{(2)/(3)}


\textsf{Factor out common term }(-2t+3)^{(2)/(3)}:


\implies (-2t+3)^{(2)/(3)}(5t+2(-2t+3))


\textsf{Simplify}:


\implies (-2t+3)^{(2)/(3)}(5t-4t+6)


\implies (-2t+3)^{(2)/(3)}(t+6)


\implies (t+6)(-2t+3)^{(2)/(3)}

User Alter
by
4.1k points