156k views
1 vote
If anyone knows about definite integrals for calculus then please I request help! I

Will award 100 points to anyone who can figure out the answer in RED! THANKS AND GOOD LUCK!!

If anyone knows about definite integrals for calculus then please I request help! I-example-1
User Blakelead
by
5.3k points

1 Answer

2 votes

Answer:


\displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (1)/(8) \bigg( e^\Big{(4)/(25)} - e^\Big{(4)/(81)} \bigg)

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx

Step 2: Integrate Pt. 1

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = 4x^(-2)
  2. [u] Differentiate [Basic Power Rule, Derivative Properties]:
    \displaystyle du = (-8)/(x^3) \ dx
  3. [Bounds] Switch:
    \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^(-2) = (4)/(81)} \atop {x = 5 ,\ u = 4(5)^(-2) = (4)/(25)}} \right.

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (-1)/(8)\int\limits^9_5 {(-8)/(x^3)e^\big{4x^(-2)}} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (-1)/(8)\int\limits^{(4)/(81)}_{(4)/(25)} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:
    \displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (-1)/(8)(e^\big{u}) \bigg| \limits^{(4)/(81)}_{(4)/(25)}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (-1)/(8) \bigg( e^\Big{(4)/(81)} - e^\Big{(4)/(25)} \bigg)
  5. Simplify:
    \displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (1)/(8) \bigg( e^\Big{(4)/(25)} - e^\Big{(4)/(81)} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User David Jeske
by
5.2k points