Answer:
![\displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (1)/(8) \bigg( e^\Big{(4)/(25)} - e^\Big{(4)/(81)} \bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/5p358it2xkfce5wvg1wz5g0hwtphozu2vl.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://img.qammunity.org/2021/formulas/mathematics/college/je9vx4nu9fprre5oszklxfozykmiyr5l2m.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/kyhrzhajthfkoabkn5u9i412baa68ie7zm.png)
U-Substitution
Explanation:
Step 1: Define
Identify
![\displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx](https://img.qammunity.org/2021/formulas/mathematics/high-school/ecu6f06s19fq1wxnvbl1z5i8yzba8nk422.png)
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u:
![\displaystyle u = 4x^(-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mckxgnb5faopugqu0l8c8anq8dlxgh04u7.png)
- [u] Differentiate [Basic Power Rule, Derivative Properties]:
![\displaystyle du = (-8)/(x^3) \ dx](https://img.qammunity.org/2021/formulas/mathematics/high-school/k8tfii6w2edincn5iq6a4xipbrt50jrq9o.png)
- [Bounds] Switch:
![\displaystyle \left \{ {{x = 9 ,\ u = 4(9)^(-2) = (4)/(81)} \atop {x = 5 ,\ u = 4(5)^(-2) = (4)/(25)}} \right.](https://img.qammunity.org/2021/formulas/mathematics/high-school/rskdhrj97u846bzkx1ifzvyuzvp0eweqf3.png)
Step 3: Integrate Pt. 2
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (-1)/(8)\int\limits^9_5 {(-8)/(x^3)e^\big{4x^(-2)}} \, dx](https://img.qammunity.org/2021/formulas/mathematics/high-school/e1lfcnvnj8wsvrnqzjlwmxenj8jf4ee6r9.png)
- [Integral] U-Substitution:
![\displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (-1)/(8)\int\limits^{(4)/(81)}_{(4)/(25)} {e^\big{u}} \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/tr7a542ssxhywfg4o291hh85ovjerhdbw1.png)
- [Integral] Exponential Integration:
![\displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (-1)/(8)(e^\big{u}) \bigg| \limits^{(4)/(81)}_{(4)/(25)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/f3nhkxjycjtkuarw8dnffu5m1975ryqn6z.png)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (-1)/(8) \bigg( e^\Big{(4)/(81)} - e^\Big{(4)/(25)} \bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/57bliw4j20wtnhnceof4ywz1snebhl2dan.png)
- Simplify:
![\displaystyle \int\limits^9_5 {(1)/(x^3)e^\big{4x^(-2)}} \, dx = (1)/(8) \bigg( e^\Big{(4)/(25)} - e^\Big{(4)/(81)} \bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/5p358it2xkfce5wvg1wz5g0hwtphozu2vl.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration