44.3k views
4 votes
Find the area of the region under the graph of the function f on the interval [1, 8].

f(x) =3/x
square units

1 Answer

4 votes

Answer:


\displaystyle \int\limits^8_1 {(3)/(x)} \, dx = 9 \ln 2

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle f(x) = (3)/(x) \\\left[ 1 ,\ 8 \right]

Step 2: Integrate

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle \int\limits^8_1 {(3)/(x)} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle 3 \int\limits^8_1 {(1)/(x)} \, dx
  3. [Integral] Logarithmic Integration:
    \displaystyle 3 \int\limits^8_1 {(1)/(x)} \, dx = 3 \ln \big| x \big| \bigg| \limits^8_1
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle 3 \int\limits^8_1 {(1)/(x)} \, dx = 3 \ln 8
  5. Simplify:
    \displaystyle \int\limits^8_1 {(3)/(x)} \, dx = 9 \ln 2

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Gazihan Alankus
by
4.2k points