200k views
3 votes
Find the derivative using the limit process of f (x) = - 10x

1 Answer

3 votes

Answer:


(d)/(dx) f(x) =-10

General Formulas and Concepts:

Calculus

  • Derivative Notation
  • Definition of a Derivative:
    \lim_(h \to 0) (f(x+h)-f(x))/(h)

Explanation:

Step 1: Define

f(x) = -10x

Step 2: Find Derivative

  1. Substitute:
    (d)/(dx) f(x)= \lim_(h \to 0) (-10(x + h)-(-10x))/(h)
  2. Distribute -10:
    (d)/(dx) f(x)= \lim_(h \to 0) (-10x -10h-(-10x))/(h)
  3. Distribute -1:
    (d)/(dx) f(x)= \lim_(h \to 0) (-10x -10h+10x)/(h)
  4. Combine like terms:
    (d)/(dx) f(x)= \lim_(h \to 0) (-10h)/(h)
  5. Divide:
    (d)/(dx) f(x)= \lim_(h \to 0) -10
  6. Evaluate:
    (d)/(dx) f(x)=-10
User Jeffrey Cordero
by
4.4k points