41.6k views
25 votes
Find :
\mathsf {(dy)/(dx) (3x^(2) - 9x + 5)^(9)}

Require thorough explanation. Thanks in advance!

2 Answers

5 votes

Answer:


(dy)/(dx)=9(6x-9)(3x^2-9x+5)^8

Explanation:

Given equation:


y=(3x^2-9x+5)^9

To differentiate the given equation, use the chain rule:

Chain Rule


\textsf{If }\: y=f(u) \:\textsf{ and } \: u=g(x) \textsf{ then}:


(dy)/(dx)=(dy)/(du) * (du)/(dx)


\textsf{Find } \:(dy)/(dx)\: \textsf{ if } \:y=(3x^2-9x+5)^9


\textsf{Let }\:y=u^9 \: \textsf{ where }\: u=3x^2-9x+5

Differentiate the two parts separately:


\implies (dy)/(du)=9u^8 \quad \textsf{and} \quad (du)/(dx)=6x-9

Put everything back into the chain rule formula:


\begin{aligned}(dy)/(dx) & =(dy)/(du) * (du)/(dx)\\\\\implies (dy)/(dx) & = (6x-9) * 9u^8\\\\& = (6x-9) * 9(3x^2-9x+5)^8\\\\& = 9(6x-9)(3x^2-9x+5)^8\end{aligned}

User Syaz
by
5.0k points
13 votes


\sf{\qquad\qquad\huge\underline{{\sf Answer}}}

Let's solve ~


\qquad \sf  \dashrightarrow \:\sf \: (d)/(dx) (3 {x}^(2) - 9x + 5) {}^(9)

we know :


\qquad \sf  \dashrightarrow \:\sf \: (d)/(dx) ({x}^(n)) = nx {}^(n - 1)

So, by using the folowing property with chain rule ~


\qquad \sf  \dashrightarrow \:\mathsf { 9(3x^(2) - 9x + 5)^(8)} \sdot(6x - 9)

User Lewiatan
by
4.7k points