Answer:
x = 100°
Explanation:
As the given shape is a regular polygon, the triangles created by extending the sides are isosceles triangles.
To calculate the base angles of the isosceles triangle, find the interior angle of the regular polygon:
![\textsf{Interior angle of a regular polygon} = (180^(\circ)(n-2))/(n)](https://img.qammunity.org/2023/formulas/mathematics/college/e4v7s2shgctpsjwu5zliuwe3xc5lhcygv2.png)
![\textsf{(where }n \textsf{ is the number of sides)}](https://img.qammunity.org/2023/formulas/mathematics/college/g4a8e6h7kvobpopv0e0xj2oolmdbwg55h8.png)
Therefore:
![\textsf{Interior angle of a regular nonagon} = (180^(\circ)(9-2))/(9)=140^(\circ)](https://img.qammunity.org/2023/formulas/mathematics/college/4n0mn8o5fsvk491arcg17d10sl90girrsj.png)
As angles on a straight line sum to 180°, the base angle of the isosceles triangle is:
= 180° - interior angle
= 180° - 140°
= 40°
Interior angles of a triangle sum to 180°.
⇒ 2 base angles + x = 180°
⇒ 2 × 40° + x = 180°
⇒ 80° + x = 180°
⇒ x = 180° - 80°
⇒ x = 100°