Answer:
(a) width = (x - 1)
length = (7x - 6)
(b) Area = 350 cm²
Perimeter = 114 cm
Explanation:
Part (a)
Given equation:
![7x^2-13x+6](https://img.qammunity.org/2023/formulas/mathematics/high-school/etbieziasuf6ga3xjs5zjnalrc92mxugv1.png)
⇒ a = 7, b = -13, c = 6
Find 2 two numbers that multiply to ac and sum to b: -6 and -7
Rewrite b as the sum of these 2 numbers:
![\implies 7x^2-7x-6x+6](https://img.qammunity.org/2023/formulas/mathematics/high-school/x0jd849phz9tlchdzq5lg7e05cgdq4ha8i.png)
Factorize the first two terms and the last two terms separately:
![\implies 7x(x-1)-6(x-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wmejmszex8q23irthb6874dinsgifngyao.png)
Factor out the common term (x - 1):
![\implies (7x-6)(x-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/wucsg9x7k1nx5khpfvawnobn1fpw7x1zho.png)
Therefore:
- width = (x - 1)
- length = (7x - 6)
Part (b)
Substitute the given value of x = 8 into the equations to find the area and perimeter:
![\begin{aligned}x=8cm \implies \textsf{Area} & = 7(8)^2-13(8)+6\\& = 448-104+6\\& = 350 \sf \:\: cm^2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1n6hkih8d4xzfc0r0308klri4p3lwlt3ip.png)
![\begin{aligned}\textsf{Perimeter} & = 2(\sf width+length)\\& =2[(x-1)+(7x-6)]\\ & = 2[(8-1)+(7(8)-6)]\\ & = 2[7+(56-6)] \\& = 2(7+50)\\& = 2(57)\\ & = 114 \sf \:\: cm\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wda50i3a4q50hzub5onafe4iuob6enzja0.png)