212k views
1 vote
Please help me do this question

Please help me do this question-example-1

1 Answer

8 votes


(2+3i)^2 =4+12i+9i^2=4+12i-9=-5+12i\\\\(1-i)^2=1-2i+i^2 = 1-2i-1=-2i


\therefore ((2+3i)^(2))/((1-i)^(2))=(-5+12i)/(-2i)\left((i)/(i) \right)=(-5i+12i^2)/(-2i^2)\\\\=(-12-5i)/(2)=-6-2.5i

The modulus is


r=√((-6)^2+(-2.5)^2)=6.5

Since the complex number lies in the third quadrant, the argument is


\theta=\pi-\tan^(-1) \left((-2.5)/(-6) \right)=\pi-\tan^(-1) \left((5)/(12) \right)

So, the answer is:


\boxed{6.5e^{i\left(\pi-\tan^(-1) \left((5)/(12) \right) \right)}}

User Manoel Stilpen
by
3.3k points