202k views
5 votes
I need the answer take your time to answer it please!​

I need the answer take your time to answer it please!​-example-1
User Psbits
by
8.7k points

2 Answers

2 votes

Answer:


\textsf {1. x = 28}


\textsf {2. a = c = e = f = 55 and b = d = 125}

Explanation:


\textsf {Question 1}


\textsf {Here, the Angle Sum Property needs to be remembered, }\\\textsf {which states that the internal angle sum of a triangle is }\\\textsf {equal to 180 degrees.}


\textsf {Solving :}


\implies \mathsf {5x - 60 + 2x + 40 + 3x - 80 = 180}


\implies \mathsf {10x - 100 = 180}


\implies \mathsf {10x = 280}


\implies \mathsf {x = (280)/(10)}


\implies \mathsf {x = 28}


\textsf {Question 2}


\textsf {Now, remember the sum of linear angles is 180,}\\ \textsf{vertical angles are equal, and corresponding angles are equal.}


\textsf {Hence, e = f = a = c = 180 - 125}


\implies \mathsf {a = c = e = f = 55}


\textsf {Also, b and d are equal to the listed angle as}\\ \textsf{d corresponds to it, and b is the vertical angle of d. }


\implies \mathsf {b = d = 125}

User Ankit Tyagi
by
8.0k points
9 votes


\star\:{\underline{\underline{\sf{\purple{ \: Question \: 1\: }}}}}


{\large{\textsf{\textbf{\underline{\underline{Given \: :}}}}}}

‣ Angle A = 5x - 60°

‣ Angle B = 2x + 40°

‣ Angle C = 3x - 80°


{\large{\textsf{\textbf{\underline{\underline{To \: Find \: :}}}}}}

‣ The value of
x


{\large{\textsf{\textbf{\underline{\underline{Solution \: :}}}}}}

By angle sum property [ASP] of a triangle which states that the sum of all angles of a triangle = 180°


\longrightarrow \tt A+B+C =180°


\longrightarrow \tt (5x - 60) + (2x + 40) + (3x - 80) =180


\longrightarrow \tt 5x + 2x + 3x - 60 + 40 - 80 =180


\longrightarrow \tt 10x - 60 + 40 - 80 =180


\longrightarrow \tt 10x - 140 + 40 =180


\longrightarrow \tt 10x - 100 = 180


\longrightarrow \tt 10x = 180 + 100


\longrightarrow \tt x = \cancel{(280)/(10) }


\longrightarrow \tt x = \purple{28 \degree}

Therefore, the value of
x is 28°


\star\:{\underline{\underline{\sf{\red{ \: Question \: 2\: }}}}}


{\large{\textsf{\textbf{\underline{\underline{Given \: :}}}}}}

‣ Line p is parallel to line q which is intersected by a transversal.


{\large{\textsf{\textbf{\underline{\underline{To \: Find \: :}}}}}}

‣ The unknown angles.


{\large{\textsf{\textbf{\underline{\underline{Solution \: :}}}}}}

Finding angle
e

[linear pair axiom]


\longrightarrow \tt 125 \degree + \angle e = 180 \degree


\longrightarrow \tt \angle e = 180 \degree - 125 \degree


\longrightarrow \tt \angle e = \red{55 \degree}

Now,

For angle
f

[Vertically opposite angles]


\longrightarrow \tt \angle f = \angle e


\longrightarrow \tt \angle f = \green{55 \degree }

Now,

For angle
a

[Corresponding angles]


\longrightarrow \tt \angle a = \angle e


\longrightarrow \tt \angle a = \orange{55 \degree}

Now,

For angle
d

[Corresponding angles]


\longrightarrow \tt \angle d = \pink{125 \degree}

Now,

For angle
c

[Vertically opposite angles]


\longrightarrow \tt \angle c = \angle a


\longrightarrow \tt \angle c = \gray{ 55 \degree}

Now,

For angle
b

[Vertically opposite angles]


\longrightarrow \tt \angle b = \angle d


\longrightarrow \tt \angle b = \purple{ 125 \degree}

Hence,

★ Angle A = 55°

★ Angle B = 125°

★ Angle C = 55°

★ Angle D = 125°

★ Angle E = 55°

★ Angle F = 55°


{\underline{\rule{290pt}{2pt}}}

User Raphv
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories