202k views
5 votes
I need the answer take your time to answer it please!​

I need the answer take your time to answer it please!​-example-1
User Psbits
by
6.4k points

2 Answers

2 votes

Answer:


\textsf {1. x = 28}


\textsf {2. a = c = e = f = 55 and b = d = 125}

Explanation:


\textsf {Question 1}


\textsf {Here, the Angle Sum Property needs to be remembered, }\\\textsf {which states that the internal angle sum of a triangle is }\\\textsf {equal to 180 degrees.}


\textsf {Solving :}


\implies \mathsf {5x - 60 + 2x + 40 + 3x - 80 = 180}


\implies \mathsf {10x - 100 = 180}


\implies \mathsf {10x = 280}


\implies \mathsf {x = (280)/(10)}


\implies \mathsf {x = 28}


\textsf {Question 2}


\textsf {Now, remember the sum of linear angles is 180,}\\ \textsf{vertical angles are equal, and corresponding angles are equal.}


\textsf {Hence, e = f = a = c = 180 - 125}


\implies \mathsf {a = c = e = f = 55}


\textsf {Also, b and d are equal to the listed angle as}\\ \textsf{d corresponds to it, and b is the vertical angle of d. }


\implies \mathsf {b = d = 125}

User Ankit Tyagi
by
6.0k points
9 votes


\star\:{\underline{\underline{\sf{\purple{ \: Question \: 1\: }}}}}


{\large{\textsf{\textbf{\underline{\underline{Given \: :}}}}}}

‣ Angle A = 5x - 60°

‣ Angle B = 2x + 40°

‣ Angle C = 3x - 80°


{\large{\textsf{\textbf{\underline{\underline{To \: Find \: :}}}}}}

‣ The value of
x


{\large{\textsf{\textbf{\underline{\underline{Solution \: :}}}}}}

By angle sum property [ASP] of a triangle which states that the sum of all angles of a triangle = 180°


\longrightarrow \tt A+B+C =180°


\longrightarrow \tt (5x - 60) + (2x + 40) + (3x - 80) =180


\longrightarrow \tt 5x + 2x + 3x - 60 + 40 - 80 =180


\longrightarrow \tt 10x - 60 + 40 - 80 =180


\longrightarrow \tt 10x - 140 + 40 =180


\longrightarrow \tt 10x - 100 = 180


\longrightarrow \tt 10x = 180 + 100


\longrightarrow \tt x = \cancel{(280)/(10) }


\longrightarrow \tt x = \purple{28 \degree}

Therefore, the value of
x is 28°


\star\:{\underline{\underline{\sf{\red{ \: Question \: 2\: }}}}}


{\large{\textsf{\textbf{\underline{\underline{Given \: :}}}}}}

‣ Line p is parallel to line q which is intersected by a transversal.


{\large{\textsf{\textbf{\underline{\underline{To \: Find \: :}}}}}}

‣ The unknown angles.


{\large{\textsf{\textbf{\underline{\underline{Solution \: :}}}}}}

Finding angle
e

[linear pair axiom]


\longrightarrow \tt 125 \degree + \angle e = 180 \degree


\longrightarrow \tt \angle e = 180 \degree - 125 \degree


\longrightarrow \tt \angle e = \red{55 \degree}

Now,

For angle
f

[Vertically opposite angles]


\longrightarrow \tt \angle f = \angle e


\longrightarrow \tt \angle f = \green{55 \degree }

Now,

For angle
a

[Corresponding angles]


\longrightarrow \tt \angle a = \angle e


\longrightarrow \tt \angle a = \orange{55 \degree}

Now,

For angle
d

[Corresponding angles]


\longrightarrow \tt \angle d = \pink{125 \degree}

Now,

For angle
c

[Vertically opposite angles]


\longrightarrow \tt \angle c = \angle a


\longrightarrow \tt \angle c = \gray{ 55 \degree}

Now,

For angle
b

[Vertically opposite angles]


\longrightarrow \tt \angle b = \angle d


\longrightarrow \tt \angle b = \purple{ 125 \degree}

Hence,

★ Angle A = 55°

★ Angle B = 125°

★ Angle C = 55°

★ Angle D = 125°

★ Angle E = 55°

★ Angle F = 55°


{\underline{\rule{290pt}{2pt}}}

User Raphv
by
5.8k points