28.8k views
1 vote
Work the problem for each card, look for the solution at the top of the next card. Use space and show all work

1. 12500 (1+r)^T
2. (18200)(3.25/100)(15)

User Wasserholz
by
4.5k points

1 Answer

6 votes

Answer:Mathematics of Money:

Compound Interest Analysis With Applications

This site is a part of the JavaScript E-labs learning objects for decision making. Other JavaScript in this series are categorized under different areas of applications in the MENU section on this page.

Professor Hossein Arsham

Compound Interest: The future value (FV) of an investment of present value (PV) dollars earning interest at an annual rate of r compounded m times per year for a period of t years is:

FV = PV(1 + r/m)mt

or

FV = PV(1 + i)n

where i = r/m is the interest per compounding period and n = mt is the number of compounding periods.

One may solve for the present value PV to obtain:

PV = FV/(1 + r/m)mt

Numerical Example: For 4-year investment of $20,000 earning 8.5% per year, with interest re-invested each month, the future value is

FV = PV(1 + r/m)mt = 20,000(1 + 0.085/12)(12)(4) = $28,065.30

Notice that the interest earned is $28,065.30 - $20,000 = $8,065.30 -- considerably more than the corresponding simple interest.

Effective Interest Rate: If money is invested at an annual rate r, compounded m times per year, the effective interest rate is:

reff = (1 + r/m)m - 1.

This is the interest rate that would give the same yield if compounded only once per year. In this context r is also called the nominal rate, and is often denoted as rnom.

Numerical Example: A CD paying 9.8% compounded monthly has a nominal rate of rnom = 0.098, and an effective rate of:

r eff =(1 + rnom /m)m = (1 + 0.098/12)12 - 1 = 0.1025.

Thus, we get an effective interest rate of 10.25%, since the compounding makes the CD paying 9.8% compounded monthly really pay 10.25% interest over the course of the year.

Mortgage Payments Components: Let where P = principal, r = interest rate per period, n = number of periods, k = number of payments, R = monthly payment, and D = debt balance after K payments, then

R = P × r / [1 - (1 + r)-n]

and

D = P × (1 + r)k - R × [(1 + r)k - 1)/r]

Explanation:

User Stuart Langley
by
4.9k points