61.0k views
3 votes
The rectangular coordinates of a point are given. Find polar coordinates (r,theta) of this point with expressed in radians. Let r>0 and -2pi

(-2(square root)3,2)

PLEASE HELP URGENT

User Alex Lau
by
5.7k points

1 Answer

6 votes

Answer:

The answer is "The Polar coordinates (r,
\theta) =
(4,(5 \pi)/(6))"

Explanation:

Given point:


\to (-2√(3),2)

Formula:


r=√(x^2+y^2)\\


=\sqrt{(-2√(3))^2+(2)^2}\\\\=√(12+4)\\\\=√(16)\\\\=√(4^2)\\\\=4


\therefore \\\\ \tan \theta= (y)/(x)\\\\


\tan \theta=(2)/(-2√(3))\\\\ \tan \theta= -(1)/(√(3))\\\\ \tan \theta= (5\pi)/(6)\\\\ \theta= (5\pi)/(6)

The Polar coordinates (r,
\theta) =
(4,(5 \pi)/(6)).

User Evenwerk
by
5.8k points