162,283 views
41 votes
41 votes
Given that f(x)= x^3/4 +6
a) Find f(4)
b) Find f^-1(x)
c) Find f^-1(8)

Given that f(x)= x^3/4 +6 a) Find f(4) b) Find f^-1(x) c) Find f^-1(8)-example-1
User Doctorsherlock
by
2.9k points

2 Answers

21 votes
21 votes

a)


f(4)=(4^3)/(4)+6=4^2+6=16+6=22

b)


\begin{aligned}\\&y=(x^3)/(4)+6\\&4y=x^3+24\\&x^3=4y-24\\&x=\sqrt[3]{4y-24}\\&f^(-1)(x)=\sqrt[3]{4x-24}\end

c)


f^(-1)(8)=\sqrt[3]{4\cdot8-24}=\sqrt[3]{8}=2

User OneRaynyDay
by
3.2k points
16 votes
16 votes

Answer:


\displaystyle \large{f(4)=22}\\\\\displaystyle \large{f^(-1)(x)=\sqrt[3]{4x-24}}\\\\\displaystyle \large{f^(-1)(8) = 2}

Explanation:

In this problem, we are given the linear function:


\displaystyle \large{f(x)=(x^3)/(4)+6}

( a ) Find f(4)

Simply substitute x = 4 in the function f(x).


\displaystyle \large{f(4)=(4^3)/(4)+6}\\\\\displaystyle \large{f(4)=4^2+6}\\\\\displaystyle \large{f(4)=16+6}\\\\\displaystyle \large{f(4)=22}

( b ) Find the inverse

To find
\displaystyle \large{f^(-1)(x)}, solve for x-term then swap x-term and y-term.


\displaystyle \large{4f(x)=x^3+24}\\\\\displaystyle \large{4f(x)-24=x^3}\\\\\displaystyle \large{\sqrt[3]{4f(x)-24}=\sqrt[3]{x^3}}\\\\\displaystyle \large{x=\sqrt[3]{4f(x)-24}}

Swap f(x) and x.


\displaystyle \large{f^(-1)(x)=\sqrt[3]{4x-24}}

( c ) Find inverse f(8)

Substitute x = 8 in inverse function.


\displaystyle \large{f^(-1)(8) = \sqrt[3]{4(8)-24}}\\\\\displaystyle \large{f^(-1)(8) = \sqrt[3]{32-24}}\\\\\displaystyle \large{f^(-1)(8) = \sqrt[3]{8}}\\\\\displaystyle \large{f^(-1)(8) = 2}

Please let me know if you have any doubts!

User Mareq
by
2.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.