Answer:
The equation in point-slope form is:
![\mathbf{y+8= (4)/(9)(x+3)}](https://img.qammunity.org/2021/formulas/mathematics/college/kmo52df7qjxlorqfd9ptndsjsl0bna6t80.png)
Explanation:
Write the equation of the line that passes through the points (-3,-8) and (6,-4)
The point slope form is:
![y-y_1=m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ks7lzc9jj3emt3ptrdvrvr0uzhz4c0qyo5.png)
Where m is slope and x₁ and y₁ are the points given
Finding Slope
Slope can be found of given points using formula:
![Slope=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/b1v433ysk57ysph9isg6glgdwkxxbasf24.png)
We have
![x_1=-3, y_1=-8, x_2=6 \ and \ y_2=-4](https://img.qammunity.org/2021/formulas/mathematics/college/davpdkru5buo4yawrlyvcrbimuuytdzde5.png)
Putting values and finding slope
![Slope=(y_2-y_1)/(x_2-x_1)\\Slope=(-4-(-8))/(6-(-3))\\Slope=(-4+8)/(6+3)\\Slope=(4)/(9)](https://img.qammunity.org/2021/formulas/mathematics/college/u01r0ilj8oq0ju4j7bcxyp5p8gy7jllzig.png)
So, slope m = 4/9
Using point (-3,-8) and slope m = 4/9 the equation is:
![y-y_1=m(x-x_1)\\y-(-8)=(4)/(9)(x-(-3))\\y+8= (4)/(9)(x+3)\\](https://img.qammunity.org/2021/formulas/mathematics/college/7c1rkrrs0it68bk244d43sj42xobitiasu.png)
So, the equation in point-slope form is:
![\mathbf{y+8= (4)/(9)(x+3)}](https://img.qammunity.org/2021/formulas/mathematics/college/kmo52df7qjxlorqfd9ptndsjsl0bna6t80.png)