Answer:
The trigonometric ratios associated with (-5, -4) are
,
and
.
Explanation:
Let
. From Trigonometry, we remember the following definitions for the trigonometric ratios, dimensionless:
(1)
(2)
(3)
If we know that
and
, then the trigonometric ratios are, respectively:
![\sin t = \frac{-4}{\sqrt{(-5)^(2)+(-4)^(2)}}](https://img.qammunity.org/2021/formulas/mathematics/college/r1u5aq02iognzdhzwrxwys0yub2iwe8k7v.png)
![\sin t \approx -0.625](https://img.qammunity.org/2021/formulas/mathematics/college/kcxifc2me72ocrk1gtsuqg51pnyvoynjaw.png)
![\cos t = \frac{-5}{\sqrt{(-5)^(2)+(-4)^(2)}}](https://img.qammunity.org/2021/formulas/mathematics/college/31reu3r4hml6gj72ph5w8dcalaucva9tnm.png)
![\cos t \approx -0.781](https://img.qammunity.org/2021/formulas/mathematics/college/9g0m9lnonp8euj4us8xg1ivsif0ci2xta9.png)
![\tan t = (-4)/(-5)](https://img.qammunity.org/2021/formulas/mathematics/college/oqah4ldd5hb8ahurjohwljtchrqm7oxg6z.png)
![\tan t = 0.8](https://img.qammunity.org/2021/formulas/mathematics/college/le098ixwtg23by4gjwn44j552zqfirsetk.png)
The trigonometric ratios associated with (-5, -4) are
,
and
.