Answer:
11.
![4x^(3)-10x^(2)+6x](https://img.qammunity.org/2023/formulas/mathematics/high-school/ju1po87af4tlr6afsm20joe8v9macad47g.png)
Take out 2x ( greatest common factor )
![2x(2x^(2)-5x+3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1ha97x4r2vml335ixpanxzjvk30oj5s0ei.png)
Factor
![2x(2x^(2) -2x-3x+3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hx74e3u58z25eok6ziru0lme913jof4icg.png)
![2x(x-1)-3(x-1)=(2x-3)(x-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hdfeg4ch5ad25l5nd1gfyz9gten84b0z04.png)
Don't forget about the 2x we took out earlier
Solution to 11:
![2x(2x-3)(x-1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/fsi2rmlmjtv5lhzjnyb69hw7b8ft6laisz.png)
12.
![16x^(2) -25y^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/8s4hxf1c3zqan9jmur36pls45y9c0lzhat.png)
This is the difference of squares, so let's use the formula...
![a^(2)-b^(2)=(a-b)(a+b)](https://img.qammunity.org/2023/formulas/mathematics/high-school/uhvei91d7e3uzfabfwurxt6u49j0pgy3hk.png)
if,
and
![b=25y^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/qd9aoa4nmcdz3n4bkjlcp0hr3zjae12w7t.png)
then, the Solution to 12 is:
![(4x-5y)(4x+5y)](https://img.qammunity.org/2023/formulas/mathematics/high-school/6p3e4d641x9usivf5gn6rhqeh6xies1z5i.png)
13.
![3x^3-24](https://img.qammunity.org/2023/formulas/mathematics/high-school/efj21blgpg43iwc0tqlgy134wc658fecbf.png)
First of all, you must find the greatest common factor because there isn't anything else you can do.
![3(x^3-8)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3hqmfwm8xrfxb9ss8p4g5z5pnjbzfyud3d.png)
Now you can see the difference of cubes...
![a^3-b^3=(a-b)(a^2+ab+b^2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/7sf2cpf14qd3qb0fg7pwug1v42aaer4s17.png)
so, the Solution to 13 is:
![3(x^3-8)= 3(x-2)(x^2+2x+4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/kz30gygf8oc5j3c9d505pvvk6qrvl9i828.png)