171k views
2 votes
Evaluate the double integral.

∫∫8y2dA, D is the triangular region with vertices (0, 1), (1, 2), (4, 1)

User Kanso
by
7.9k points

1 Answer

4 votes

Answer:


\iint_D 8y^2 \ dA = (88)/(3)

Explanation:

The equation of the line through the point
(x_o,y_o) &
(x_1,y_1) can be represented by:


y-y_o = m(x - x_o)

Making m the subject;


m = (y_1 - y_0)/(x_1-x_0)

we need to carry out the equation of the line through (0,1) and (1,2)

i.e

y - 1 = m(x - 0)

y - 1 = mx

where;


m= (2-1)/(1-0)

m = 1

Thus;

y - 1 = (1)x

y - 1 = x ---- (1)

The equation of the line through (1,2) & (4,1) is:

y -2 = m (x - 1)

where;


m = (1-2)/(4-1)


m = (-1)/(3)


y-2 = -(1)/(3)(x-1)

-3(y-2) = x - 1

-3y + 6 = x - 1

x = -3y + 7

Thus: for equation of two lines

x = y - 1

x = -3y + 7

i.e.

y - 1 = -3y + 7

y + 3y = 1 + 7

4y = 8

y = 2

Now, y ranges from 1 → 2 & x ranges from y - 1 to -3y + 7


\iint_D 8y^2 \ dA = \int^2_1 \int ^(-3y+7)_(y-1) \ 8y^2 \ dxdy


\iint_D 8y^2 \ dA =8 \int^2_1 \int ^(-3y+7)_(y-1) \ y^2 \ dxdy


\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ( \int^(-3y+7)_(y-1) \ dx \bigg) dy


\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ( [xy^2]^(-3y+7)_(y-1) \bigg ) \ dy


\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ( [y^2(-3y+7-y+1)]\bigg ) \ dy


\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ([y^2(-4y+8)] \bigg ) \ dy


\iint_D 8y^2 \ dA =8 \int^2_1 \bigg ( -4y^3+8y^2 \bigg ) \ dy


\iint_D 8y^2 \ dA =8 \bigg [( -4y^4)/(4)+(8y^3)/(3) \bigg ]^2_1


\iint_D 8y^2 \ dA =8 \bigg [ -y^4+(8y^3)/(3) \bigg ]^2_1


\iint_D 8y^2 \ dA =8 \bigg [ -2^4+(8(2)^3)/(3) + 1^4- (8* (1)^3)/(3)\bigg]


\iint_D 8y^2 \ dA =8 \bigg [ -16+(64)/(3) + 1- (8)/(3)\bigg]


\iint_D 8y^2 \ dA =8 \bigg [ -15+ (64-8)/(3)\bigg]


\iint_D 8y^2 \ dA =8 \bigg [ -15+ (56)/(3)\bigg]


\iint_D 8y^2 \ dA =8 \bigg [ (-45+56)/(3)\bigg]


\iint_D 8y^2 \ dA =8 \bigg [ (11)/(3)\bigg]


\iint_D 8y^2 \ dA = (88)/(3)

User Bbrame
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories