274,160 views
31 votes
31 votes
Please help me do this question

Please help me do this question-example-1
User Yatin Mistry
by
2.6k points

1 Answer

10 votes
10 votes

If
z^4 = -3 + 4j, where
j = √(-1), we first write
z^4 in exponential form using


\left|z^4\right| = √((-3)^2 + 4^2) = √(25) = 5

and


\arg\left(z^4\right) = \pi + \tan^(-1)\left(-\frac43\right) = \pi - \tan^(-1)\left(\frac43\right)

Then


z^4 = 5 \exp\left(j \left(\pi - \tan^(-1)\left(\frac43\right)\right)

By de Moivre's theorem, the fourth roots of
z^4 are


z = 5^(1/4) \exp\left(j \frac{\pi - \tan^(-1)\left(\frac43\right) + 2k\pi}4\right)

with
k\in\{0,1,2,3\}, so the four possible values of
z are


k = 0 \implies z_1 = 5^(1/4) \exp\left(j \frac{\pi - \tan^(-1)\left(\frac43\right)}4\right)


k = 1 \implies z_2 = 5^(1/4) \exp\left(j \frac{3\pi - \tan^(-1)\left(\frac43\right)}4\right)


k = 2 \implies z_3 = 5^(1/4) \exp\left(j \frac{5\pi - \tan^(-1)\left(\frac43\right)}4\right)


k = 3 \implies z_4 = 5^(1/4) \exp\left(j \frac{7\pi - \tan^(-1)\left(\frac43\right)}4\right)

(see attached plot from WolframAlpha)

Please help me do this question-example-1
User Andrsmllr
by
3.1k points