113k views
5 votes
SV is an angle bisector of ∠RST. If m∠RSV = (3x + 9)° and m∠RST = (8x − 26)°, find x.

SV is an angle bisector of ∠RST. If m∠RSV = (3x + 9)° and m∠RST = (8x − 26)°, find-example-1
User Saty
by
4.7k points

1 Answer

3 votes

Answer:

C) Definition of Angle Bisector, x=22

Explanation:


As\ we\ the\ question\ relates\ only\ about\ SV\ bisecting\ \angle RST,\ We\ may\ use\ the\\
C)Angle\ Bisector


From\ the\ information\ provided\ we\ know\ that,\\SV\ bisects\ \angle RST\ into\ \angle RSV\ and\ \angle VST.\\Hence,\\\angle RSV\ and\ \angle VST\ are\ equal\ as\ they\ are\ the\ bisected\ angles\ of\ the\ same\ angle.\\Hence,\\\angle RSV\ = \angle VST\\Hence,\\We\ know\ that:\\\angle RSV\ + \angle VST =\angle RST\\Hence,\\\angle RSV\ +\angle RSV\ = \angle RST\\2\angle RSV=\ \angle RST\\


Now\ from\ the\ information\ about\ the\ values\ of\ the\ angles\ provided\ in\ the\ question\ ,\\\angle RSV=(3x+9)\\\angle RST=(8x-26)\\Hence,\\2(3x+9)=(8x-26)\\6x+18=8x-26\\18+26=8x-6x\\2x=44\\x=22

User Rjsang
by
3.8k points