118k views
4 votes
If A=3i +2j+3k ,find the magnitude of A+B and A-B​

1 Answer

4 votes

Since vector B was not specified, I'll assume one at random. You can later answer your own question.

Answer:


\mid\mid \vec A+\vec B \mid \mid=√(105)


\mid\mid \vec A-\vec B \mid \mid=√(149)

Step-by-step explanation:

Given:


\vec A=3\hat i +2\hat j+3\hat k

And (assumed):


\vec B=-5\hat i +8\hat j-4\hat k

Find the magnitude of


\vec A+\vec B


\vec A-\vec B

Given a vector


\vec P=x\hat i +y\hat j+z\hat k

The magnitude of the vector is:


\mid\mid \vec P\mid \mid=√(x^2+y^2+z^2)

  • First part:


\vec A+\vec B =3\hat i +2\hat j+3\hat k-5\hat i +8\hat j-4\hat k


\vec A+\vec B =-2\hat i +10\hat j-\hat k

The magnitude of the sum is:


\mid\mid \vec A+\vec B \mid \mid=√((-2)^2+10^2+(-1)^2)=√(4+100+1)


\mathbf{\mid\mid \vec A+\vec B \mid \mid=√(105)}

  • Second part:


\vec A-\vec B =3\hat i +2\hat j+3\hat k-(-5\hat i +8\hat j-4\hat k)


\vec A-\vec B =3\hat i +2\hat j+3\hat k+5\hat i -8\hat j+4\hat k


\vec A-\vec B =8\hat i -6\hat j+7\hat k

The magnitude of the difference is:


\mid\mid \vec A-\vec B \mid \mid=√(8^2+(-6)^2+7^2)=√(64+36+49)


\mathbf{\mid\mid \vec A-\vec B \mid \mid=√(149)}

User Tamas Szoke
by
5.6k points