96.5k views
5 votes
The sum of two numbers is 92. One eighth of the larger number plus one third of the smaller number is 19. Find the numbers.​

User Arezzo
by
6.7k points

1 Answer

2 votes

Answer:

The numbers 'x' and 'y' are:


x=56,\:y=36

Explanation:

Let 'x' and 'y' be the two numbers

As the sum of the two numbers is 92.

so


x+y = 92

Given that One-eighth of the larger number plus one-third of the smaller number is 19.

so


(1)/(8)x\:+\:(1)/(3)y=19

now solving both equations to determine the numbers 'x' and 'y'.


\begin{bmatrix}(1)/(8)x+(1)/(3)y=19\\ x+y=92\end{bmatrix}


\mathrm{Multiply\:}(1)/(8)x+(1)/(3)y=19\mathrm{\:by\:}8\:\mathrm{:}\:\quad \:x+(8)/(3)y=152


\begin{bmatrix}x+(8)/(3)y=152\\ x+y=92\end{bmatrix}


x+y=92


-


\underline{x+(8)/(3)y=152}


-(5)/(3)y=-60


\begin{bmatrix}x+(8)/(3)y=152\\ -(5)/(3)y=-60\end{bmatrix}

solve for y


-(5)/(3)y=-60


-5y=-180


\mathrm{Divide\:both\:sides\:by\:}-5


(-5y)/(-5)=(-180)/(-5)


y=36


\mathrm{For\:}x+(8)/(3)y=152\mathrm{\:plug\:in\:}y=36


x+(8)/(3)\cdot \:36=152


x=56

Thus, the numbers 'x' and 'y' are:


x=56,\:y=36

User Madrang
by
7.6k points