195k views
0 votes
Given vectors u = ⟨2, –3⟩ and v = ⟨1, –1⟩, what is the measure of the angle between the vectors?

User Firelynx
by
4.1k points

2 Answers

6 votes

Answer:

The Answer is A. 11.3

Explanation:

got it right. Also thats just the letter answer :)

User Barlop
by
4.6k points
6 votes

Answer:

The measure of the angle between the vectors = Ф = 11.30°

Explanation:

Given

  • u = ⟨2, –3⟩
  • v = ⟨1, –1⟩


\mathrm{Computing\:the\:angle\:between\:the\:vectors}:\quad \cos \left(\theta \right)\:=\frac{\vec{a\:}\cdot \vec{b\:}}{\left|\vec{a\:}\right|\cdot \left|\vec{b\:}\right|}

Next, find the lengths of the vectors:


\mathrm{Computing\:the\:Euclidean\:Length\:of\:a\:vector}:\quad \left|\left(x_1\:,\:\:\ldots \:,\:\:x_n\right)\right|=\sqrtx_i\right

u = ⟨2, –3⟩


\:\:\left|u\right|\:=√(2^2+\left(-3\right)^2)


=√(13)

u = ⟨2, –3⟩


|v|=√(1^2+\left(-1\right)^2)


=√(2)

Finally, the angle is given by:


\mathrm{Computing\:the\:angle\:between\:the\:vectors}:\quad \cos \left(\theta \right)\:=\frac{\vec{a\:}\cdot \vec{b\:}}{\left|\vec{a\:}\right|\cdot \left|\vec{b\:}\right|}

cos (Ф) = 5/√26

Ф = arc cos (cos (Ф)) = arc cos (5 √26) / (26)

Ф = 11.30°

Thus, the measure of the angle between the vectors = Ф = 11.30°

User DerWOK
by
4.7k points