98.1k views
22 votes
Which ordered pair is a solution to the following system of inequalities?

y < –x2 + x

y > x2 – 4

(0, –1)
(1, 1)
(2, –3)
(3, –6)

User Kimbaudi
by
4.9k points

1 Answer

13 votes

Answer: (0,-1)

Explanation:

Let's start with the first inequality,
y < -x^(2)+x. To check which points satisfy this inequality, we can substitute the x- and y-coordinates and see if they satisfy the inequality.

  • A)
    -1 < -0^(2)+0 \longrightarrow -1 < 0 \longrightarrow \text{ True}
  • B)
    1 < -1^(2)+1 \longrightarrow 1 < 0 \longrightarrow \text{ False}
  • C)
    -3 < -2^(2)+2 \longrightarrow -3 < -2 \longrightarrow \text{ True}
  • D)
    -6 < -3^(2)+3 \longrightarrow -6 < -6 \longrightarrow \text{ False}

Once again, we can repeat this for the second inequality (but this time, we only need to check the points that satisfy the first inequality).

  • A)
    -1 > 0^(2)-4 \longrightarrow -1 > -4 \longrightarrow \text{ True}
  • C)
    -3 > 2^(2)-4 \longrightarrow -3 > 0 \longrightarrow \text{ False}

Therefore, the answer is (A) (0, -1).

User Jared Farrish
by
5.2k points