132,972 views
24 votes
24 votes
Which expression is equivalent to
4^sqrt 6 / 3^sqrt2

Which expression is equivalent to 4^sqrt 6 / 3^sqrt2-example-1
User LightStriker
by
2.8k points

2 Answers

24 votes
24 votes


\\ \rm\Rrightarrow \frac{\sqrt[4]{6}}{\sqrt[3]{2}}

  • ^b√a=a^1/b


\\ \rm\Rrightarrow \frac{6^{(1)/(4)}}{2^{(1)/(3)}}

  • 6=2×3


\\ \rm\Rrightarrow \frac{2^{(1)/(4)}3^{(1)/(4)}}{2^{(1)/(3)}}

  • a^m÷a^n=a^m-n


\\ \rm\Rrightarrow 2^{(1)/(4)-(1)/(3)}3^{(1)/(4)}


\\ \rm\Rrightarrow 2^{(-1)/(12)}3^{(1)/(4)}


\\ \rm\Rrightarrow \frac{3^{(1)/(4)}}{2^{(1)/(12)}}

  • Equalise exponential denominators


\\ \rm\Rrightarrow \frac{3^{(3)/(12)}}{2^{(1)/(12)}}


\\ \rm\Rrightarrow \left((3^3)/(2)\right)^{(1)/(12)}


\\ \rm\Rrightarrow \sqrt[12]{(3^3)/(2)}


\\ \rm\Rrightarrow \sqrt[12]{(3^3* 2^82^3)/(22^82^3)}


\\ \rm\Rrightarrow \sqrt[12]{(27(256)(8))/(2^12)}


\\ \rm\Rrightarrow \frac{\sqrt[12]{6912(8)}}{2}


\\ \rm\Rrightarrow \frac{\sqrt[12]{55296}}{2}

User Benjaminjosephw
by
3.2k points
13 votes
13 votes

Answer:


\frac{\sqrt[12]{55296} }{2}

Explanation:

Given expression:


\frac{\sqrt[4]{6}}{\sqrt[3]{2}}


\textsf{Apply exponent rule} \quad \sqrt[n]{a}=a^{(1)/(n)}:


\implies \frac{\sqrt[4]{6}}{\sqrt[3]{2}}=\frac{6^{(1)/(4)}}{2^{(1)/(3)}}

Multiply the numerator and denominator by
2^{(2)/(3)} :


\implies \frac{6^{(1)/(4)}}{2^{(1)/(3)}} * \frac{2^{(2)/(3)}}{2^{(2)/(3)}}


\textsf{Apply exponent rule to the denominator} \quad a^b \cdot a^c=a^(b+c):


\implies \frac{6^{(1)/(4)}}{2^{(1)/(3)}} * \frac{2^{(2)/(3)}}{2^{(2)/(3)}}=\frac{6^{(1)/(4)} \cdot 2^{(2)/(3)}}{2^{(1)/(3)+(2)/(3)}}=\frac{6^{(1)/(4)} \cdot 2^{(2)/(3)}}{2}

Rewrite 1/4 as 3/12 and 2/3 as 8/12 :


\implies \frac{6^{(1)/(4)} \cdot 2^{(2)/(3)}}{2}=\frac{6^{(3)/(12)} \cdot 2^{(8)/(12)}}{2}


\textsf{Apply exponent rule} \quad a^c \cdot b^c=(a \cdot b)^c:


\implies \frac{6^{(3)/(12)} \cdot 2^{(8)/(12)}}{2}=((6^3 \cdot 2^(8))^(1)/(12))/(2)

Simplify the operation in the parentheses:


\implies ((6^3 \cdot 2^(8))^(1)/(12))/(2)=((216\cdot 256)^(1)/(12))/(2)=((55296)^(1)/(12))/(2)


\textsf{Finally, apply exponent rule} \quad a^{(1)/(n)}=\sqrt[n]{a}:


\implies ((55296)^(1)/(12))/(2)=\frac{\sqrt[12]{55296} }{2}

User Crwils
by
2.7k points