227k views
23 votes
Use Cramer Rule to solve the following system: 8x−5y=70 and 9x+7y=3

User Alexi Akl
by
4.4k points

1 Answer

10 votes

Answer:


(x,y) = (5,-6)

Explanation:


\underline{\textbf{Determinant of a matrix.}}\\\\\text{For a}~ 2 * 2 ~ \text{matrix,}\\\\\begin{vmatrix} a_1&a_2\\b_1&b_2 \end{vmatrix} = a_1b_2 - a_2b_1\\\\\\\text{For a}~ 3 * 3 ~ \text{matrix,}\\\\\begin{vmatrix} a_1&a_2&a_3\\ b_1&b_2&b_3\\ c_1&c_2&c_3 \end{vmatrix} = a_1\begin{vmatrix} b_2&b_3\\c_2&c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1&b_3\\c_1&c_3 \end{vmatrix}+ a_3 \begin{vmatrix} b_1&b_2\\c_1&c_2 \end{vmatrix}\\\\\\


~~~~~~~~~~~~~~~~~~=a_1(b_2c_3-b_3c_2) -a_2(b_1c_3-b_3c_1) +a_3(b_1c_2-b_2c_1)


\underline{\textbf{Cramer's Rule to solve a system of two equations.}}\\\\\text{Consider the system of two equations:}\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a_1x + b_1 y= c_1\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~a_2x +b_2 y = c_2\\\\\text{Here,}\\\\x = (D_x)/(D)= \frac{\begin{vmatrix} c_1&b_1\\c_2&b_2 \end{vmatrix}}{\begin{vmatrix} a_1&b_1\\a_2&b_2 \end{vmatrix}}\\\\\\ y= (D_y)/(D)= \frac{\begin{vmatrix} a_1&c_1\\a_2&c_2 \end{vmatrix}}{\begin{vmatrix} a_1&b_1\\a_2&b_2 \end{vmatrix}}\\\\


\underline{\textbf{Solution:}}\\\\~~~~~~~~~~~~~~~~~~~~~~~8x-5y = 70~~~~~~...(i)\\\\~~~~~~~~~~~~~~~~~~~~~~~9x +7y = 3~~~~~~~...(ii)\\\\\text{Applying Cramer's rule:}\\\\x = (D_x)/(D)\\\\\\~~=\frac{\begin{vmatrix} 70& -5 \\3&7 \end{vmatrix}}{\begin{vmatrix} 8& -5\\ 9& 7\end{vmatrix}}\\\\\\~~=(70(7) -(-5)(3))/((8)(7)-(-5)(9))\\\\\\~~=(490+15)/(56+45)\\\\\\~~=(505)/(101)\\\\\\~~=5


y = (D_y)/(D)\\\\\\~~=\frac{\begin{vmatrix} 8& 70 \\9&3 \end{vmatrix}}{\begin{vmatrix} 8& -5\\ 9& 7\end{vmatrix}}\\\\\\~~=((8)(3) -(70)(9))/((8)(7)-(-5)(9))\\\\\\~~=(24-630)/(56+45)\\\\\\~~=-(606)/(101)\\\\\\~~=-6


\textbf{Hence, the solution to the system of equation is}~ (x,y) = (5,-6)

User Richards
by
4.5k points