Answer:
After 43 minutes, the bacteria will be 40 remainings.
Explanation:
Given that:
Initial population of bacteria
= 800
After time (t) = 18 mins
A = 240
Using the model:
![A = A_o e^(k*t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/m3szsx41y55j21xlsivbtx0fohkt78hg03.png)
![240=800 e^(k*18)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pigo32rzvo70sbawgjym4ll21pspfeb1az.png)
![(240)/(800)= e^(18k)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rxoiz2ggodphddhsunujkda5snlkj8cv92.png)
![0.3= e^(18k)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8l8tz9unmib54telz8hkifocts78umqcsd.png)
By applying natural log on both sides, we get:
In(0,3) = 18k (In e)
- 1.20397 = 18 k * (1)
18 k = -1.20397
k = -1.20397/ 18
k = - 0.06688
k ≅ -0.07
After time (t), the bacteria population (A) = 40
Now;
![40 = 800 e^(k*t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3k41utp4yghdy1n0ajapuh550ppuk64re0.png)
![(40 )/(800)= e^(-0.07*t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ubq6c9wyuc0fsa7srgjat4dlw8eorg7jz9.png)
![0.05= e^(-0.07*t)](https://img.qammunity.org/2021/formulas/mathematics/high-school/i00c0feoe04odllvwdier1efa54zgslh10.png)
In (0.05) = -0.07t * In (e)
- 2.9957 = - 0.07t
t = - 2.9957/ -0.07
t = 42.795
t ≅ 43 minutes
Thus, after 43 minutes, the bacteria will be 40 remainings.