Answer:
35.7
Explanation:
Step one
Given the coordinates
ABCD with vertices A(−4, 2), B(8,2), C(11, 7), and D(-1, 7).
AB=(−4, 2), (8,2)
BC=(8,2), (11, 7)
CD=(11, 7),(-1, 7)
DA=(-1, 7),(-4,2)
The distance between points AB=
![AB= \sqrt (x_2-x_1)^2+(y_2-y_1)^2](https://img.qammunity.org/2021/formulas/mathematics/college/1ss2hkxuvvqhdgzgg75k8boi1r5nout9bz.png)
![AB= \sqrt (8+4)^2+(2-2)^2\\\\AB= \sqrt 12^2+(0)^2\\\\AB= \sqrt144\\\\AB=12](https://img.qammunity.org/2021/formulas/mathematics/high-school/fgz6t7gey4npki8b44ajwxdfbftel901xu.png)
The distance between points BC=
![BC= \sqrt (11-8)^2+(7-2)^2\\\\BC= \sqrt 3^2+(5)^2\\\\BC= \sqrt34\\\\BC=5.8](https://img.qammunity.org/2021/formulas/mathematics/high-school/nrz2u3x39sn62bgzazzw1npgqy84ftj7zj.png)
The distance between points CD
![CD= \sqrt (-1-11)^2+(7-7)^2\\\\CD= \sqrt -12^2+(0)^2\\\\CD= \sqrt144\\\\CD=12](https://img.qammunity.org/2021/formulas/mathematics/high-school/u21fi6u616ueoz6ozgzep4mcjy23pqq9qo.png)
The distance between points DA
![DA= \sqrt (-4+1)^2+(2-7)^2\\\\DA= \sqrt -3^2+(-5)^2\\\\DA= \sqrt34\\\\DA=5.8](https://img.qammunity.org/2021/formulas/mathematics/high-school/vykolwdq8hyw3cszhioypbmnqru9x1mnd0.png)
Hence the perimeter of the footpath= 12+5.8+12+5.8
=35.7