Answer:
![0.51\ \text{m/s}^2](https://img.qammunity.org/2021/formulas/physics/college/8ail8l7xgn2g6kyazz8rxw3q0wea0ulep3.png)
Step-by-step explanation:
t = Time taken
g = Acceleration due to gravity =
![9.81\ \text{m/s}^2](https://img.qammunity.org/2021/formulas/mathematics/college/qrhiitafdmet2gosh3mmqbr0bfua92shk9.png)
r = Radius of track = 0.355 km
Displacement in
direction is 3 m
![y=ut+(1)/(2)gt^2\\\Rightarrow 3=0+(1)/(2)* 9.81 t^2\\\Rightarrow t=\sqrt{(3* 2)/(9.81)}\\\Rightarrow t=0.782\ \text{s}](https://img.qammunity.org/2021/formulas/physics/college/dcu0r184sxbemvvo8uuqk2p3bc8lk5pm95.png)
Displacement in
direction
![x=10.5\ \text{m}](https://img.qammunity.org/2021/formulas/physics/college/uixtf9zflskiwmoh9gitc6k0abybiamjdw.png)
![v=(x)/(t)\\\Rightarrow v=(10.5)/(0.782)\\\Rightarrow v=13.43\ \text{m/s}](https://img.qammunity.org/2021/formulas/physics/college/nhwcblp82yk4w8xu4pgwdncowbzk0ta99i.png)
Centripetal acceleration is given by
![a_c=(v^2)/(r)\\\Rightarrow a_c=(13.43^2)/(355)\\\Rightarrow a_c=0.51\ \text{m/s}^2](https://img.qammunity.org/2021/formulas/physics/college/rjaaxjsgx1spcfb0i42vxqimd59a5koc7y.png)
The minimum centripetal acceleration the truck must have is
![0.51\ \text{m/s}^2](https://img.qammunity.org/2021/formulas/physics/college/8ail8l7xgn2g6kyazz8rxw3q0wea0ulep3.png)