100k views
3 votes
How to solve
3sin^2x-5sinx-2

1 Answer

7 votes

Final answer:

To solve the trigonometric equation, rewrite it as a standard quadratic equation in terms of sex, use the quadratic formula to find y, and then find x by taking the arcsine of each solution for y.

Step-by-step explanation:

To solve the equation 3sin^2x - 5sinx - 2 = 0, we can treat it as a quadratic equation in terms of six. Let's set y = sinx. The equation then becomes 3y^2 - 5y - 2 = 0.

This is a standard quadratic equation, and we can solve for y using the quadratic formula, y = (-b ± √(b^2 - 4ac))/(2a). After finding the values of y, we can solve for x by taking sin^{-1}(y) for each solution of y that lies within the range of the sine function, which is [-1, 1].

Once we have the solutions for x, we need to consider the domain of x in the context of the problem, which is typically the set of all angles where the quadratic equation in six holds.

User Bluecricket
by
8.7k points

Related questions

asked Oct 15, 2024 186k views
Phs asked Oct 15, 2024
by Phs
7.9k points
1 answer
2 votes
186k views
1 answer
1 vote
104k views