Answer:
The derivative of function
is
![(5)/(2√(x) )](https://img.qammunity.org/2021/formulas/mathematics/college/52yhq1c5ouw01wym4m5x07qixfflht6hd5.png)
Explanation:
We need to find derivative of the given function
![f(x)=5√(x)](https://img.qammunity.org/2021/formulas/mathematics/college/4xmtr77ntd7c3y9cih7pvhgadlluu15j7i.png)
Finding the derivative:
![(d)/(dx)(5√(x) )](https://img.qammunity.org/2021/formulas/mathematics/college/u6ur1bm57qnszbfaq2qo7qcg5lyaf3twdl.png)
Using the rule (a.f)' = a(f)', taking out constant value 5
![=5(d)/(dx)(√(x) )](https://img.qammunity.org/2021/formulas/mathematics/college/y56kjqm2s6927g05sr4yrvs4g8omif8zd9.png)
We know
Replacing
![√(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/76sopd83a7m4z4bhm34lbuborywbqs6z.png)
![=5(d)/(dx)(x^{(1)/(2)} )](https://img.qammunity.org/2021/formulas/mathematics/college/h0kx33btkwvgeb61qbwtz5pe5z1jsolj4f.png)
Applying derivative rule:
![(d)/(dx)(x^a)= a.x^(a-1)](https://img.qammunity.org/2021/formulas/mathematics/college/iry2c8kchjynsctll1efzgp159ioo2tyt2.png)
![=5*(1)/(2)(x^{(1)/(2)-1} )\\=(5)/(2)(x^{-(1)/(2)} )\\=\frac{5}{2x^{(1)/(2)}}\\=(5)/(2√(x) )](https://img.qammunity.org/2021/formulas/mathematics/college/zt8joq5in1el3w7cbkcjd643l1g6za5229.png)
So, the derivative of function
is
![(5)/(2√(x) )](https://img.qammunity.org/2021/formulas/mathematics/college/52yhq1c5ouw01wym4m5x07qixfflht6hd5.png)