51.8k views
3 votes
5. Given that 2x+329, the range of values of x is
(1 Point)​

1 Answer

6 votes

Answer:

The range of 2x+329:


\mathrm{Range\:of\:}2x+329:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

Explanation:

Given the expression


2x+329

We know that range is termed as the set of values of the dependent variable for which a function is defined.

  • We also know that the range of polynomials with odd degree is all the real numbers.

i.e.
-\infty \:<f\left(x\right)<\infty \:

The given expression is a polynomial with an odd degree. Hence, the range of this expression will be all the real numbers.

Thus, the range of 2x+329:


\mathrm{Range\:of\:}2x+329:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

User Mike Soule
by
3.7k points