51.8k views
3 votes
5. Given that 2x+329, the range of values of x is
(1 Point)​

1 Answer

6 votes

Answer:

The range of 2x+329:


\mathrm{Range\:of\:}2x+329:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

Explanation:

Given the expression


2x+329

We know that range is termed as the set of values of the dependent variable for which a function is defined.

  • We also know that the range of polynomials with odd degree is all the real numbers.

i.e.
-\infty \:<f\left(x\right)<\infty \:

The given expression is a polynomial with an odd degree. Hence, the range of this expression will be all the real numbers.

Thus, the range of 2x+329:


\mathrm{Range\:of\:}2x+329:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:-\infty \:<f\left(x\right)<\infty \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:\infty \:\right)\end{bmatrix}

User Mike Soule
by
7.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories