Answer:
Please check the explanation.
Explanation:
Given the polynomial function
![f\left(x\right)\:=x^3+2x^2-16x-32](https://img.qammunity.org/2021/formulas/mathematics/college/2dyn54vcjkf9tgvgfgm9bhmjnwpx690fnv.png)
Let us determine the factors by solving
![\:\left0\right\:=x^3+2x^2-16x-32\:](https://img.qammunity.org/2021/formulas/mathematics/college/5x328ctj8qcqf6e5diwtq85q76v900brps.png)
![\left(x+2\right)\left(x+4\right)\left(x-4\right)=0](https://img.qammunity.org/2021/formulas/mathematics/college/n6swhefipfh5ln3csxbawecrrmrg07z7yl.png)
Using the zero factor principle:
if
![ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)](https://img.qammunity.org/2021/formulas/mathematics/college/pgix1ewdj003su3mtaw6bkaotoeft5gm62.png)
![x+2=0\quad \mathrm{or}\quad \:x+4=0\quad \mathrm{or}\quad \:x-4=0](https://img.qammunity.org/2021/formulas/mathematics/college/3mqftabmzv9z469ra0re45oq6a8dngj0un.png)
Thus, (x+2) (x+4) and (x-4) are the factors of the polynomial function.
Therefore,
YES
And (x-2) (x+6) are not the factors of the polynomial function.
Therefore,
YES