Answer:
11.7 (3 s.f.)
Explanation:
Given information:
- ∠CAB = 90°
- ∠ABC = 52°
- AC = 9.2
As one of the given angles is 90°, the triangle is a right triangle.
Draw the triangle using the given information (see attached) to help visualize the problem.
To calculate the length of BC, use the sine trigonometric ratio:
![\sf \sin(\theta)=(O)/(H)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3tpxlh8gqgxj2nhafxnc99isgxelflkj8s.png)
where:
is the angle- O is the side opposite the angle
- H is the hypotenuse (the side opposite the right angle)
From inspection of the attached triangle:
= 52°- O = AC = 9.2
- H = BC
Substitute the values into the formula and solve for BC:
![\implies \sf \sin(52^(\circ))=(9.2)/(BC)](https://img.qammunity.org/2023/formulas/mathematics/college/l5jpa516fvvakuzgy7ycl4w149b6b39khj.png)
![\implies \sf BC=(9.2)/(\sin(52^(\circ)))](https://img.qammunity.org/2023/formulas/mathematics/college/y8rskyuehc3i72ywo3bn8n28qjnuf5yy3e.png)
![\implies \sf BC=11.67496758...](https://img.qammunity.org/2023/formulas/mathematics/college/cfhwqakb1arrtzjknuuvqw676gitirc3h0.png)
![\implies \sf BC=11.7\:\:(3 \:s.f.)](https://img.qammunity.org/2023/formulas/mathematics/college/69gemw6y3co2zpmezdx4olx3anfalr731l.png)
Therefore, the length of BC is 11.7 (3 s.f.).