5.6k views
5 votes
Does (5, 10)make the inequality y ≥ 10x+5 true

2 Answers

5 votes

Solution:-

  • (x,y)=(5,10)


\qquad\quad {:}\longmapsto\sf x=5


\qquad\quad {:}\longmapsto\sf y=10

  • Write the inequality equation


\qquad\quad {:}\longmapsto\sf y \geqslant 10x+5

  • Substitute the values


\qquad\quad {:}\longmapsto\sf 10 \geqslant 10 (5)+5


\qquad\quad {:}\longmapsto\sf 10 \geqslant 50+5


\qquad\quad {:}\longmapsto\sf 10 \lt 55


\therefore \sf y \geqslant 10x+5 {\boxed {False}}

User Arowin
by
8.4k points
4 votes

Answer:

It is False.

Explanation:

When you substitute the coordinates into the inequality equation :


y \geqslant 10x + 5


let \: x = 5,y = 10


10 \geqslant 10(5) + 5


10 \geqslant 55 \: (false)

Therefore, 10 isn't greater than 55.

User Smugford
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories