5.5k views
5 votes
Does (5, 10)make the inequality y ≥ 10x+5 true

2 Answers

5 votes

Solution:-

  • (x,y)=(5,10)


\qquad\quad {:}\longmapsto\sf x=5


\qquad\quad {:}\longmapsto\sf y=10

  • Write the inequality equation


\qquad\quad {:}\longmapsto\sf y \geqslant 10x+5

  • Substitute the values


\qquad\quad {:}\longmapsto\sf 10 \geqslant 10 (5)+5


\qquad\quad {:}\longmapsto\sf 10 \geqslant 50+5


\qquad\quad {:}\longmapsto\sf 10 \lt 55


\therefore \sf y \geqslant 10x+5 {\boxed {False}}

User Arowin
by
4.8k points
4 votes

Answer:

It is False.

Explanation:

When you substitute the coordinates into the inequality equation :


y \geqslant 10x + 5


let \: x = 5,y = 10


10 \geqslant 10(5) + 5


10 \geqslant 55 \: (false)

Therefore, 10 isn't greater than 55.

User Smugford
by
4.9k points