47.5k views
0 votes
Curved surface area of a right circular cylinder is 4.4 m². If the radius of the base of the cylinder is 0.7 m, find its height. [Assume π = 22/7]​

User Netrolite
by
3.4k points

1 Answer

8 votes


{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

★ Curved surface area of right circular cylinder is 4.4 m².

★ Radius of base of the cylinder is 0.7 m.


\tt \pi = (22)/(7)


{\large{\textsf{\textbf{\underline{\underline{To \: Find :}}}}}}

★ The height of cylinder.


{\large{\textsf{\textbf{\underline{\underline{Using \: Formula :}}}}}}


\star \: \tt C.S.A \: of \: cylinder = \boxed{ \tt \pink{{ 2πrh}}}


{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Let,

❍ The height of circular cylinder be
h

Radius [r] of base of cylinder be 0.7 m

We know,


\star \: \tt C.S.A \: of \: cylinder = 2πrh

Putting,


\tt \pi = (22)/(7)

☆ r as 0.7


\longrightarrow \tt 4.4 {m}^(2) = 2πrh


\longrightarrow \tt 4.4 {m}^(2) = \bigg( 2 * (22)/(7) * 0.07 * h \bigg)m


\longrightarrow \tt (44)/(10) {m}^(2) = \bigg( {2 }* \frac{22}{ \cancel{7}} * \frac{ \cancel{7}}{10} * h \bigg)m


\longrightarrow \tt (44)/(10) {m}^(2) = \bigg( 44 * \frac{ {1}}{10} * h \bigg)m


\longrightarrow \tt \frac{44}{ \cancel{10}} * \cancel{10} \: m = \bigg( 44 * 1 * h \bigg)


\longrightarrow \tt 44 m = 44h


\longrightarrow \tt (44)/(44) m = h


\longrightarrow \tt \red{ 1 m } = h

Therefore, the height of cylinder = 1 m.


\begin{gathered} {\underline{\rule{290pt}{2pt}}} \end{gathered}

User Lorenz Merdian
by
3.5k points