47.5k views
0 votes
Curved surface area of a right circular cylinder is 4.4 m². If the radius of the base of the cylinder is 0.7 m, find its height. [Assume π = 22/7]​

User Netrolite
by
8.1k points

1 Answer

8 votes


{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

★ Curved surface area of right circular cylinder is 4.4 m².

★ Radius of base of the cylinder is 0.7 m.


\tt \pi = (22)/(7)


{\large{\textsf{\textbf{\underline{\underline{To \: Find :}}}}}}

★ The height of cylinder.


{\large{\textsf{\textbf{\underline{\underline{Using \: Formula :}}}}}}


\star \: \tt C.S.A \: of \: cylinder = \boxed{ \tt \pink{{ 2πrh}}}


{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Let,

❍ The height of circular cylinder be
h

Radius [r] of base of cylinder be 0.7 m

We know,


\star \: \tt C.S.A \: of \: cylinder = 2πrh

Putting,


\tt \pi = (22)/(7)

☆ r as 0.7


\longrightarrow \tt 4.4 {m}^(2) = 2πrh


\longrightarrow \tt 4.4 {m}^(2) = \bigg( 2 * (22)/(7) * 0.07 * h \bigg)m


\longrightarrow \tt (44)/(10) {m}^(2) = \bigg( {2 }* \frac{22}{ \cancel{7}} * \frac{ \cancel{7}}{10} * h \bigg)m


\longrightarrow \tt (44)/(10) {m}^(2) = \bigg( 44 * \frac{ {1}}{10} * h \bigg)m


\longrightarrow \tt \frac{44}{ \cancel{10}} * \cancel{10} \: m = \bigg( 44 * 1 * h \bigg)


\longrightarrow \tt 44 m = 44h


\longrightarrow \tt (44)/(44) m = h


\longrightarrow \tt \red{ 1 m } = h

Therefore, the height of cylinder = 1 m.


\begin{gathered} {\underline{\rule{290pt}{2pt}}} \end{gathered}

User Lorenz Merdian
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories