161k views
1 vote
A Rectangle has a length that is one foot longer than it’s width. If the area of the rectangle is 210ft^2 what are the dimensions?

1 Answer

5 votes

Answer:

Required Answer:-

Let


\qquad\quad {:}\longmapsto\sf The\: breadth =x\: ft


\qquad\quad {:}\longmapsto\sf The\:length=x+1ft


\qquad\quad {:}\longmapsto\sf Area=210ft^2

  • As we know that in a rectangle


{\boxed {\sf Area=length* Breadth}}

  • Substitute the values


\qquad\quad {:}\longmapsto\sf x (x+1)=210


\qquad\quad {:}\longmapsto\sf x^2+x=210


\qquad\quad {:}\longmapsto\sf x^2+x-210=0

  • Factorise


\qquad\quad {:}\longmapsto\sf x^2+15x-14x-210=0


\qquad\quad {:}\longmapsto\sf x (x+15)-14 (x+15)=0


\qquad\quad {:}\longmapsto\sf (x+15)(x-14)=0


\qquad\quad {:}\longmapsto\sf x+15=0\:or\:x-14=0


\qquad\quad {:}\longmapsto\sf x=-15\:or\:x=14

  • In menstruation there is no negative value .
  • So (x=-15) can't be possible.

Hence correct value


\qquad\quad {:}\longmapsto\sf x=14

__________________________


\qquad\quad {:}\longmapsto\sf Breadth =x=14ft


\qquad\quad {:}\longmapsto\sf Length=x+1=14+1=15ft

User Javierfdr
by
5.9k points