198k views
15 votes
Please answer this question, i request

If cot θ = 7/8 , evaluate :-
(1 + sin θ)(1 – sin θ)/(1 + cos θ)(1 - cos θ)​

User AshHeskes
by
8.3k points

1 Answer

5 votes


{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}


\star \: \tt \cot \theta = (7)/(8)


{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}


\star \: \tt ((1 + \sin \theta)(1 - \sin \theta) )/((1 + \cos \theta) (1 - \cos \theta) )


{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a
\triangle ABC right angled at C and
\sf \angle \: B = \theta

Then,

Base [B] = BC

Perpendicular [P] = AC

Hypotenuse [H] = AB


\therefore \tt \cot \theta = (Base)/( Perpendicular) = (BC)/(AC) = (7)/(8)

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In
\triangle ABC, H² = B² + P² by Pythagoras theorem


\longrightarrow \tt {AB}^(2) = {BC}^(2) + {AC}^(2)


\longrightarrow \tt {AB}^(2) = {(7k)}^(2) + {(8k)}^(2)


\longrightarrow \tt {AB}^(2) = 49{k}^(2) + 64{k}^(2)


\longrightarrow \tt {AB}^(2) = 113{k}^(2)


\longrightarrow \tt AB = \sqrt{113 {k}^(2) }


\longrightarrow \tt AB = \red{ √(113) \: k}

Calculating Sin
\sf \theta


\longrightarrow \tt \sin \theta = (Perpendicular)/(Hypotenuse)


\longrightarrow \tt \sin \theta = (AC)/(AB)


\longrightarrow \tt \sin \theta = \frac{8 \cancel{k}}{ √(113) \: \cancel{ k } }


\longrightarrow \tt \sin \theta = \purple{ (8)/( √(113) ) }

Calculating Cos
\sf \theta


\longrightarrow \tt \cos \theta = (Base)/(Hypotenuse)


\longrightarrow \tt \cos \theta = (BC)/( AB)


\longrightarrow \tt \cos \theta = \frac{7 \cancel{k}}{ √(113) \: \cancel{k } }


\longrightarrow \tt \cos \theta = \purple{ (7)/( √(113) ) }

Solving the given expression :-


\longrightarrow \: \tt ((1 + \sin \theta)(1 - \sin \theta) )/((1 + \cos \theta) (1 - \cos \theta) )

Putting,

• Sin
\sf \theta =
(8)/( √(113) )

• Cos
\sf \theta =
(7)/( √(113) )


\longrightarrow \: \tt ( \bigg(1 + (8)/( √(133)) \bigg) \bigg(1 - (8)/( √(133)) \bigg) )/(\bigg(1 + (7)/( √(133)) \bigg) \bigg(1 - (7)/( √(133)) \bigg))

Using (a + b ) (a - b ) = -


\longrightarrow \: \tt \frac{ { \bigg(1 \bigg)}^(2) - { \bigg( (8)/( √(133) ) \bigg)}^(2) }{ { \bigg(1 \bigg)}^(2) - { \bigg( (7)/( √(133) ) \bigg)}^(2) }


\longrightarrow \: \tt (1 - (64)/(113) )/( 1 - (49)/(113) )


\longrightarrow \: \tt ( (113 - 64)/(113) )/( (113 - 49)/(113) )


\longrightarrow \: \tt { \frac { (49)/(113) }{ (64)/(113) } }


\longrightarrow \: \tt { (49)/(113) }÷{ (64)/(113) }


\longrightarrow \: \tt \frac{49}{ \cancel{113}} * \frac{ \cancel{113}}{64}


\longrightarrow \: \tt (49)/(64)


\qquad \: \therefore \: \tt ((1 + \sin \theta)(1 - \sin \theta) )/((1 + \cos \theta) (1 - \cos \theta) ) = \pink{(49)/(64) }


\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}


{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-


\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \: \sf{ In \:a \:Right \:Angled \: Triangle :} \\ \\ \sf {\star Sin \theta = (Perpendicular)/(Hypotenuse)} \\\\ \sf{ \star \cos \theta = ( Base )/(Hypotenuse)}\\\\ \sf{\star \tan \theta = (Perpendicular)/(Base)}\\\\ \sf{\star \cosec \theta = (Hypotenuse)/(Perpendicular)} \\\\ \sf{\star \sec \theta = (Hypotenuse)/(Base)}\\\\ \sf{\star \cot \theta = (Base)/(Perpendicular)} \end{array}}\\\end{gathered} \end{gathered}


{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment


\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

Please answer this question, i request If cot θ = 7/8 , evaluate :- (1 + sin θ)(1 – sin-example-1
User Thomas Kessler
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories