Answer:
![f(x) = {x}^(2) + 4x](https://img.qammunity.org/2023/formulas/mathematics/high-school/qll8dmat8m7ili6v2zqs6iaai47akiez19.png)
Explanation:
The graph is concave up, this means that the leading term x^2 is positive.
![f(x) = {x}^(2) + 4x](https://img.qammunity.org/2023/formulas/mathematics/high-school/qll8dmat8m7ili6v2zqs6iaai47akiez19.png)
![y = {x}^(2) + 4x](https://img.qammunity.org/2023/formulas/mathematics/high-school/jp8d83z9qesnarx5jdhbf6ddl58k2u14jw.png)
For the x intercept, let y = 0
![{x}^(2) + 4x = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/8vzk6qkw05eznp18p16gzbbya60y1fbizq.png)
![x(x + 4) = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/65klxs0oo7rwufnho4d250ieypnf0qdjky.png)
![x = 0 \: \: \: or \: \: \: \: x = - 4](https://img.qammunity.org/2023/formulas/mathematics/high-school/efjdb517bgoeslfdsdraq7dpuuqi21mwip.png)
The x intercepts are:
(0 , 0) and (-4 , 0)
For the y intercept, let x = 0
![y = {0}^(2) + 4(0) = 0](https://img.qammunity.org/2023/formulas/mathematics/high-school/n98viuihz8heh35ygh8yyjioykg1i9bs10.png)
y intercept :
(0, 0)
For the turning point:
![t.p = (x1 + x2)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/22h2kjbow5lisdwmhycung6f1j6srwqidb.png)
![t.p = (0 + ( - 4))/(2) = - 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/eoqi4h11bjs28ngweae1jbsq5we9eey41m.png)
![f( - 2) = {( - 2)}^(2) + 4( - 2) = - 4](https://img.qammunity.org/2023/formulas/mathematics/high-school/hqrzmlrhrbxvba7iwl80tvqeds4lwd7t8w.png)
Turning point:
(-2 , -4)
If you connect all these coordinates you will get the parabola shown in the picture.