Explanation:
![{x}^(2) + 4x = - {y}^(2) + 6](https://img.qammunity.org/2023/formulas/mathematics/college/ik41904aktz3ev6j9hercamqk9j2d3t395.png)
![{x}^(2) + 4x + {y}^(2) - 6 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/ytutei4l4yslh3aae8sbh172a7zbr69s4k.png)
Standard Form of Conic is
![ax {}^(2) + bxy + c{y}^(2) + dx + ey + f = 0](https://img.qammunity.org/2023/formulas/mathematics/college/lq4bmvj8ta1olvc9ousas2ajl7in8hjz2q.png)
In this scenario, a is 1. c is 1 d is 4 and f is -6
Since a=c, we will get a circle.
Standard form of a circle is
![(x - h) {}^(2) + (y - k) {}^(2) = {r}^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/nc9h8sjmpp2wd420gkencfkqa2p43a6fyh.png)
where (h,k) is the center and r is the radius.
Step 1: Convert x^2+4x+y^2-6 into circle.
![{x}^(2) + 4x + {y}^(2) - 6](https://img.qammunity.org/2023/formulas/mathematics/college/bv0t2jica7fjgwv6bue5cf0o2t68kccxn4.png)
Add 6 to both sides
![{x}^(2) + 4x + {y}^(2) = 6](https://img.qammunity.org/2023/formulas/mathematics/college/1bkjchwn1t4xwl9cnzc6lkduz2ito5ay3d.png)
Complete the square with respect to x variable
Divide 4 by 2 and square it, then add that to both sides
![( (4)/(2) ) {}^(2) = 4](https://img.qammunity.org/2023/formulas/mathematics/college/ec4v7egoogrq4ejb95dkrnfkq68rmr34v6.png)
So add four to both sides
![{x}^(2) + 4x + 4 + {y}^(2) = 6 + 4](https://img.qammunity.org/2023/formulas/mathematics/college/kxanqgkf0m01lhlzn02p43mimsfk2mgljv.png)
Remebrr that a perfect square is
![{a}^(2) + 2ab + {b}^(2) = (a + b) {}^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/9rixlqkncpnw7rd1tr0c4y6ip141nlpqv8.png)
So we get
![(x + 2) {}^(2) + {y}^(2) = 10](https://img.qammunity.org/2023/formulas/mathematics/college/6ea4cfbrpvsujxmkwrofccuemh3iq9uovq.png)
That is our standard equation.
Look at the graph above.