110k views
8 votes
Only a genius can solve it !!


( \cos(A) )/(1 - \sin(A) ) + ( \sin(A) )/(1 - \cos(A) ) + 1 = ( \sin(A) \cos(A) )/((1 - \sin(A)(1 - \cos(A))


Only a genius can solve it !! ( \cos(A) )/(1 - \sin(A) ) + ( \sin(A) )/(1 - \cos(A-example-1

1 Answer

5 votes


\text{L.H.S}\\\\=(\cos A)/(1-\sin A) + (\sin A)/(1-\cos A) +1\\\\\\=(\cos A(1-\cos A) + \sin A(1-\sin A) + (1-\sin A)(1 - \cos A))/((1-\sin A)(1 -\cos A))\\\\\\=(\cos A - \cos^2 A + \sin A - \sin^2 A + 1 - \cos A - \sin A + \sin A \cos A)/((1 -\sin A)(1 - \cos A))\\\\\\=(-(\sin^2 A + \cos^2A) +1 + \sin A \cos A)/((1 - \sin A)(1 - \cos A))\\\\\\=(-1 + 1 + \sin A \cos A )/((1 - \sin A)((1 - \cos A))\\\\\\=(0+ \sin A \cos A)/((1 - \sin A)(1 - \cos A))\\


=(\sin A \cos A)/((1 - \sin A)(1 - \cos A))\\\\\\=\text{R.H.S}\\\\\text{Proved.}

User JanR
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories