106k views
18 votes
6. Using the discriminant, determine the value of k that will give 1 solution (i.e. discriminant equals zero) y = kx²-4x + 4 ​

User Asikorski
by
4.5k points

1 Answer

6 votes

Answer:

k = 1

Explanation:

Discriminant


b^2-4ac\quad\textsf{when }\:ax^2+bx+c=0


\textsf{when }\:b^2-4ac > 0 \implies \textsf{two real roots}


\textsf{when }\:b^2-4ac=0 \implies \textsf{one real root}


\textsf{when }\:b^2-4ac < 0 \implies \textsf{no real roots}

As we need to determine the value of k that will give one solution, set the discriminant to zero.

Given equation:


y=kx^2-4x+4

Therefore:

  • a = k
  • b = -4
  • c = 4

Substitute these values into the discriminant and solve for k:


\begin{aligned}b^2-4ac &amp; = 0\\\implies (-4)^2-4(k)(4) &amp; = 0\\16-16k &amp; = 0\\16k &amp; = 16\\\implies k &amp; = 1\end{aligned}

User Lymari
by
4.9k points